Skip to content

Spatial SQL app

The page outlines the steps to manage spatial data using SedonaSQL.

Note

Since v1.5.0, Sedona assumes geographic coordinates to be in longitude/latitude order. If your data is lat/lon order, please use ST_FlipCoordinates to swap X and Y.

SedonaSQL supports SQL/MM Part3 Spatial SQL Standard. It includes four kinds of SQL operators as follows. All these operators can be directly called through:

var myDataFrame = sedona.sql("YOUR_SQL")
myDataFrame.createOrReplaceTempView("spatialDf")
Dataset<Row> myDataFrame = sedona.sql("YOUR_SQL")
myDataFrame.createOrReplaceTempView("spatialDf")
myDataFrame = sedona.sql("YOUR_SQL")
myDataFrame.createOrReplaceTempView("spatialDf")

Detailed SedonaSQL APIs are available here: SedonaSQL API. You can find example county data (i.e., county_small.tsv) in Sedona GitHub repo.

Set up dependencies

  1. Read Sedona Maven Central coordinates and add Sedona dependencies in build.sbt or pom.xml.
  2. Add Apache Spark core, Apache SparkSQL in build.sbt or pom.xml.
  3. Please see SQL example project
  1. Please read Quick start to install Sedona Python.
  2. This tutorial is based on Sedona SQL Jupyter Notebook example. You can interact with Sedona Python Jupyter notebook immediately on Binder. Click Binder to interact with Sedona Python Jupyter notebook immediately on Binder.

Create Sedona config

Use the following code to create your Sedona config at the beginning. If you already have a SparkSession (usually named spark) created by AWS EMR/Databricks/Microsoft Fabric, please skip this step.

Sedona >= 1.4.1

You can add additional Spark runtime config to the config builder. For example, SedonaContext.builder().config("spark.sql.autoBroadcastJoinThreshold", "10485760")

import org.apache.sedona.spark.SedonaContext

val config = SedonaContext.builder()
.master("local[*]") // Delete this if run in cluster mode
.appName("readTestScala") // Change this to a proper name
.getOrCreate()
If you use SedonaViz together with SedonaSQL, please add the following line after SedonaContext.builder() to enable Sedona Kryo serializer:
.config("spark.kryo.registrator", classOf[SedonaVizKryoRegistrator].getName) // org.apache.sedona.viz.core.Serde.SedonaVizKryoRegistrator

import org.apache.sedona.spark.SedonaContext;

SparkSession config = SedonaContext.builder()
.master("local[*]") // Delete this if run in cluster mode
.appName("readTestJava") // Change this to a proper name
.getOrCreate()
If you use SedonaViz together with SedonaSQL, please add the following line after SedonaContext.builder() to enable Sedona Kryo serializer:
.config("spark.kryo.registrator", SedonaVizKryoRegistrator.class.getName()) // org.apache.sedona.viz.core.Serde.SedonaVizKryoRegistrator

from sedona.spark import *

config = SedonaContext.builder() .\
    config('spark.jars.packages',
           'org.apache.sedona:sedona-spark-shaded-3.3_2.12:1.7.0,'
           'org.datasyslab:geotools-wrapper:1.7.0-28.5'). \
    getOrCreate()
If you are using a different Spark version, please replace the 3.3 in package name of sedona-spark-shaded with the corresponding major.minor version of Spark, such as sedona-spark-shaded-3.4_2.12:1.7.0.

Sedona < 1.4.1

The following method has been deprecated since Sedona 1.4.1. Please use the method above to create your Sedona config.

var sparkSession = SparkSession.builder()
.master("local[*]") // Delete this if run in cluster mode
.appName("readTestScala") // Change this to a proper name
// Enable Sedona custom Kryo serializer
.config("spark.serializer", classOf[KryoSerializer].getName) // org.apache.spark.serializer.KryoSerializer
.config("spark.kryo.registrator", classOf[SedonaKryoRegistrator].getName)
.getOrCreate() // org.apache.sedona.core.serde.SedonaKryoRegistrator
If you use SedonaViz together with SedonaSQL, please use the following two lines to enable Sedona Kryo serializer instead:
.config("spark.serializer", classOf[KryoSerializer].getName) // org.apache.spark.serializer.KryoSerializer
.config("spark.kryo.registrator", classOf[SedonaVizKryoRegistrator].getName) // org.apache.sedona.viz.core.Serde.SedonaVizKryoRegistrator

SparkSession sparkSession = SparkSession.builder()
.master("local[*]") // Delete this if run in cluster mode
.appName("readTestJava") // Change this to a proper name
// Enable Sedona custom Kryo serializer
.config("spark.serializer", KryoSerializer.class.getName()) // org.apache.spark.serializer.KryoSerializer
.config("spark.kryo.registrator", SedonaKryoRegistrator.class.getName())
.getOrCreate() // org.apache.sedona.core.serde.SedonaKryoRegistrator
If you use SedonaViz together with SedonaSQL, please use the following two lines to enable Sedona Kryo serializer instead:
.config("spark.serializer", KryoSerializer.class.getName()) // org.apache.spark.serializer.KryoSerializer
.config("spark.kryo.registrator", SedonaVizKryoRegistrator.class.getName()) // org.apache.sedona.viz.core.Serde.SedonaVizKryoRegistrator

sparkSession = SparkSession. \
    builder. \
    appName('readTestPython'). \
    config("spark.serializer", KryoSerializer.getName()). \
    config("spark.kryo.registrator", SedonaKryoRegistrator.getName()). \
    config('spark.jars.packages',
           'org.apache.sedona:sedona-spark-shaded-3.3_2.12:1.7.0,'
           'org.datasyslab:geotools-wrapper:1.7.0-28.5'). \
    getOrCreate()
If you are using Spark versions >= 3.4, please replace the 3.0 in package name of sedona-spark-shaded with the corresponding major.minor version of Spark, such as sedona-spark-shaded-3.4_2.12:1.7.0.

Initiate SedonaContext

Add the following line after creating Sedona config. If you already have a SparkSession (usually named spark) created by AWS EMR/Databricks/Microsoft Fabric, please call sedona = SedonaContext.create(spark) instead. For Databricks, the situation is more complicated, please refer to Databricks setup guide, but generally you don't need to create SedonaContext.

Sedona >= 1.4.1

import org.apache.sedona.spark.SedonaContext

val sedona = SedonaContext.create(config)
import org.apache.sedona.spark.SedonaContext;

SparkSession sedona = SedonaContext.create(config)
from sedona.spark import *

sedona = SedonaContext.create(config)

Sedona < 1.4.1

The following method has been deprecated since Sedona 1.4.1. Please use the method above to create your SedonaContext.

SedonaSQLRegistrator.registerAll(sparkSession)
SedonaSQLRegistrator.registerAll(sparkSession)
from sedona.register import SedonaRegistrator

SedonaRegistrator.registerAll(spark)

You can also register everything by passing --conf spark.sql.extensions=org.apache.sedona.sql.SedonaSqlExtensions to spark-submit or spark-shell.

Load data from files

Assume we have a WKT file, namely usa-county.tsv, at Path /Download/usa-county.tsv as follows:

POLYGON (..., ...)  Cuming County
POLYGON (..., ...)  Wahkiakum County
POLYGON (..., ...)  De Baca County
POLYGON (..., ...)  Lancaster County

The file may have many other columns.

Use the following code to load the data and create a raw DataFrame:

var rawDf = sedona.read.format("csv").option("delimiter", "\t").option("header", "false").load("/Download/usa-county.tsv")
rawDf.createOrReplaceTempView("rawdf")
rawDf.show()
Dataset<Row> rawDf = sedona.read.format("csv").option("delimiter", "\t").option("header", "false").load("/Download/usa-county.tsv")
rawDf.createOrReplaceTempView("rawdf")
rawDf.show()
rawDf = sedona.read.format("csv").option("delimiter", "\t").option("header", "false").load("/Download/usa-county.tsv")
rawDf.createOrReplaceTempView("rawdf")
rawDf.show()

The output will be like this:

|                 _c0|_c1|_c2|     _c3|  _c4|        _c5|                 _c6|_c7|_c8|  _c9|_c10| _c11|_c12|_c13|      _c14|    _c15|       _c16|        _c17|
+--------------------+---+---+--------+-----+-----------+--------------------+---+---+-----+----+-----+----+----+----------+--------+-----------+------------+
|POLYGON ((-97.019...| 31|039|00835841|31039|     Cuming|       Cuming County| 06| H1|G4020|null| null|null|   A|1477895811|10447360|+41.9158651|-096.7885168|
|POLYGON ((-123.43...| 53|069|01513275|53069|  Wahkiakum|    Wahkiakum County| 06| H1|G4020|null| null|null|   A| 682138871|61658258|+46.2946377|-123.4244583|
|POLYGON ((-104.56...| 35|011|00933054|35011|    De Baca|      De Baca County| 06| H1|G4020|null| null|null|   A|6015539696|29159492|+34.3592729|-104.3686961|
|POLYGON ((-96.910...| 31|109|00835876|31109|  Lancaster|    Lancaster County| 06| H1|G4020| 339|30700|null|   A|2169240202|22877180|+40.7835474|-096.6886584|

Create a Geometry type column

All geometrical operations in SedonaSQL are on Geometry type objects. Therefore, before any kind of queries, you need to create a Geometry type column on a DataFrame.

SELECT ST_GeomFromWKT(_c0) AS countyshape, _c1, _c2

You can select many other attributes to compose this spatialdDf. The output will be something like this:

|                 countyshape|_c1|_c2|     _c3|  _c4|        _c5|                 _c6|_c7|_c8|  _c9|_c10| _c11|_c12|_c13|      _c14|    _c15|       _c16|        _c17|
+--------------------+---+---+--------+-----+-----------+--------------------+---+---+-----+----+-----+----+----+----------+--------+-----------+------------+
|POLYGON ((-97.019...| 31|039|00835841|31039|     Cuming|       Cuming County| 06| H1|G4020|null| null|null|   A|1477895811|10447360|+41.9158651|-096.7885168|
|POLYGON ((-123.43...| 53|069|01513275|53069|  Wahkiakum|    Wahkiakum County| 06| H1|G4020|null| null|null|   A| 682138871|61658258|+46.2946377|-123.4244583|
|POLYGON ((-104.56...| 35|011|00933054|35011|    De Baca|      De Baca County| 06| H1|G4020|null| null|null|   A|6015539696|29159492|+34.3592729|-104.3686961|
|POLYGON ((-96.910...| 31|109|00835876|31109|  Lancaster|    Lancaster County| 06| H1|G4020| 339|30700|null|   A|2169240202|22877180|+40.7835474|-096.6886584|

Although it looks same with the input, but actually the type of column countyshape has been changed to Geometry type.

To verify this, use the following code to print the schema of the DataFrame:

spatialDf.printSchema()

The output will be like this:

root
 |-- countyshape: geometry (nullable = false)
 |-- _c1: string (nullable = true)
 |-- _c2: string (nullable = true)
 |-- _c3: string (nullable = true)
 |-- _c4: string (nullable = true)
 |-- _c5: string (nullable = true)
 |-- _c6: string (nullable = true)
 |-- _c7: string (nullable = true)

Note

SedonaSQL provides lots of functions to create a Geometry column, please read SedonaSQL constructor API.

Load GeoJSON Data

Since v1.6.1, Sedona supports reading GeoJSON files using the geojson data source. It is designed to handle JSON files that use GeoJSON format for their geometries.

This includes SpatioTemporal Asset Catalog (STAC) files, GeoJSON features, GeoJSON feature collections and other variations. The key functionality lies in the way 'geometry' fields are processed: these are specifically read as Sedona's GeometryUDT type, ensuring integration with Sedona's suite of spatial functions.

Key features

  • Broad Support: The reader and writer are versatile, supporting all GeoJSON-formatted files, including STAC files, feature collections, and more.
  • Geometry Transformation: When reading, fields named 'geometry' are automatically converted from GeoJSON format to Sedona's GeometryUDT type and vice versa when writing.

Load MultiLine GeoJSON FeatureCollection

Suppose we have a GeoJSON FeatureCollection file as follows. This entire file is considered as a single GeoJSON FeatureCollection object. Multiline format is preferable for scenarios where files need to be human-readable or manually edited.

{ "type": "FeatureCollection",
    "features": [
      { "type": "Feature",
        "geometry": {"type": "Point", "coordinates": [102.0, 0.5]},
        "properties": {"prop0": "value0"}
        },
      { "type": "Feature",
        "geometry": {
          "type": "LineString",
          "coordinates": [
            [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0]
            ]
          },
        "properties": {
          "prop0": "value1",
          "prop1": 0.0
          }
        },
      { "type": "Feature",
         "geometry": {
           "type": "Polygon",
           "coordinates": [
             [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0],
               [100.0, 1.0], [100.0, 0.0] ]
             ]
         },
         "properties": {
           "prop0": "value2",
           "prop1": {"this": "that"}
           }
         }
       ]
}

Set the multiLine option to True to read multiline GeoJSON files.

df = sedona.read.format("geojson").option("multiLine", "true").load("PATH/TO/MYFILE.json")
 .selectExpr("explode(features) as features") # Explode the envelope to get one feature per row.
 .select("features.*") # Unpack the features struct.
 .withColumn("prop0", f.expr("properties['prop0']")).drop("properties").drop("type")

df.show()
df.printSchema()
val df = sedona.read.format("geojson").option("multiLine", "true").load("PATH/TO/MYFILE.json")
val parsedDf = df.selectExpr("explode(features) as features").select("features.*")
        .withColumn("prop0", expr("properties['prop0']")).drop("properties").drop("type")

parsedDf.show()
parsedDf.printSchema()
Dataset<Row> df = sedona.read.format("geojson").option("multiLine", "true").load("PATH/TO/MYFILE.json")
 .selectExpr("explode(features) as features") // Explode the envelope to get one feature per row.
 .select("features.*") // Unpack the features struct.
 .withColumn("prop0", expr("properties['prop0']")).drop("properties").drop("type")

df.show();
df.printSchema();

The output is as follows:

+--------------------+------+
|            geometry| prop0|
+--------------------+------+
|     POINT (102 0.5)|value0|
|LINESTRING (102 0...|value1|
|POLYGON ((100 0, ...|value2|
+--------------------+------+

root
 |-- geometry: geometry (nullable = false)
 |-- prop0: string (nullable = true)

Load Single Line GeoJSON Features

Suppose we have a single-line GeoJSON Features dataset as follows. Each line is a single GeoJSON Feature. This format is efficient for processing large datasets where each line is a separate, self-contained GeoJSON object.

{"type":"Feature","geometry":{"type":"Point","coordinates":[102.0,0.5]},"properties":{"prop0":"value0"}}
{"type":"Feature","geometry":{"type":"LineString","coordinates":[[102.0,0.0],[103.0,1.0],[104.0,0.0],[105.0,1.0]]},"properties":{"prop0":"value1"}}
{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[100.0,0.0],[101.0,0.0],[101.0,1.0],[100.0,1.0],[100.0,0.0]]]},"properties":{"prop0":"value2"}}

By default, when option is not specified, Sedona reads a GeoJSON file as a single line GeoJSON.

df = sedona.read.format("geojson").load("PATH/TO/MYFILE.json")
   .withColumn("prop0", f.expr("properties['prop0']")).drop("properties").drop("type")

df.show()
df.printSchema()
val df = sedona.read.format("geojson").load("PATH/TO/MYFILE.json")
   .withColumn("prop0", expr("properties['prop0']")).drop("properties").drop("type")

df.show()
df.printSchema()
Dataset<Row> df = sedona.read.format("geojson").load("PATH/TO/MYFILE.json")
   .withColumn("prop0", expr("properties['prop0']")).drop("properties").drop("type")

df.show()
df.printSchema()

The output is as follows:

+--------------------+------+
|            geometry| prop0|
+--------------------+------+
|     POINT (102 0.5)|value0|
|LINESTRING (102 0...|value1|
|POLYGON ((100 0, ...|value2|
+--------------------+------+

root
 |-- geometry: geometry (nullable = false)
 |-- prop0: string (nullable = true)

Load Shapefile

Since v1.7.0, Sedona supports loading Shapefile as a DataFrame.

val df = sedona.read.format("shapefile").load("/path/to/shapefile")
Dataset<Row> df = sedona.read().format("shapefile").load("/path/to/shapefile")
df = sedona.read.format("shapefile").load("/path/to/shapefile")

The input path can be a directory containing one or multiple shapefiles, or path to a .shp file.

  • When the input path is a directory, all shapefiles directly under the directory will be loaded. If you want to load all shapefiles in subdirectories, please specify .option("recursiveFileLookup", "true").
  • When the input path is a .shp file, that shapefile will be loaded. Sedona will look for sibling files (.dbf, .shx, etc.) with the same main file name and load them automatically.

The name of the geometry column is geometry by default. You can change the name of the geometry column using the geometry.name option. If one of the non-spatial attributes is named "geometry", geometry.name must be configured to avoid conflict.

val df = sedona.read.format("shapefile").option("geometry.name", "geom").load("/path/to/shapefile")
Dataset<Row> df = sedona.read().format("shapefile").option("geometry.name", "geom").load("/path/to/shapefile")
df = sedona.read.format("shapefile").option("geometry.name", "geom").load("/path/to/shapefile")

Each record in shapefile has a unique record number, that record number is not loaded by default. If you want to include record number in the loaded DataFrame, you can set the key.name option to the name of the record number column:

val df = sedona.read.format("shapefile").option("key.name", "FID").load("/path/to/shapefile")
Dataset<Row> df = sedona.read().format("shapefile").option("key.name", "FID").load("/path/to/shapefile")
df = sedona.read.format("shapefile").option("key.name", "FID").load("/path/to/shapefile")

The character encoding of string attributes are inferred from the .cpg file. If you see garbled values in string fields, you can manually specify the correct charset using the charset option. For example:

val df = sedona.read.format("shapefile").option("charset", "UTF-8").load("/path/to/shapefile")
Dataset<Row> df = sedona.read().format("shapefile").option("charset", "UTF-8").load("/path/to/shapefile")
df = sedona.read.format("shapefile").option("charset", "UTF-8").load("/path/to/shapefile")

(Deprecated) Loading Shapefile using SpatialRDD

If you are using Sedona earlier than v1.7.0, you can load shapefiles as SpatialRDD and converted to DataFrame using Adapter. Please read Load SpatialRDD and DataFrame <-> RDD.

Load GeoParquet

Since v1.3.0, Sedona natively supports loading GeoParquet file. Sedona will infer geometry fields using the "geo" metadata in GeoParquet files.

val df = sedona.read.format("geoparquet").load(geoparquetdatalocation1)
df.printSchema()
Dataset<Row> df = sedona.read.format("geoparquet").load(geoparquetdatalocation1)
df.printSchema()
df = sedona.read.format("geoparquet").load(geoparquetdatalocation1)
df.printSchema()

The output will be as follows:

root
 |-- pop_est: long (nullable = true)
 |-- continent: string (nullable = true)
 |-- name: string (nullable = true)
 |-- iso_a3: string (nullable = true)
 |-- gdp_md_est: double (nullable = true)
 |-- geometry: geometry (nullable = true)

Sedona supports spatial predicate push-down for GeoParquet files, please refer to the SedonaSQL query optimizer documentation for details.

GeoParquet file reader can also be used to read legacy Parquet files written by Apache Sedona 1.3.1-incubating or earlier. Please refer to Reading Legacy Parquet Files for details.

Warning

GeoParquet file reader does not work on Databricks runtime when Photon is enabled. Please disable Photon when using GeoParquet file reader on Databricks runtime.

Inspect GeoParquet metadata

Since v1.5.1, Sedona provides a Spark SQL data source "geoparquet.metadata" for inspecting GeoParquet metadata. The resulting dataframe contains the "geo" metadata for each input file.

val df = sedona.read.format("geoparquet.metadata").load(geoparquetdatalocation1)
df.printSchema()
Dataset<Row> df = sedona.read.format("geoparquet.metadata").load(geoparquetdatalocation1)
df.printSchema()
df = sedona.read.format("geoparquet.metadata").load(geoparquetdatalocation1)
df.printSchema()

The output will be as follows:

root
 |-- path: string (nullable = true)
 |-- version: string (nullable = true)
 |-- primary_column: string (nullable = true)
 |-- columns: map (nullable = true)
 |    |-- key: string
 |    |-- value: struct (valueContainsNull = true)
 |    |    |-- encoding: string (nullable = true)
 |    |    |-- geometry_types: array (nullable = true)
 |    |    |    |-- element: string (containsNull = true)
 |    |    |-- bbox: array (nullable = true)
 |    |    |    |-- element: double (containsNull = true)
 |    |    |-- crs: string (nullable = true)

If the input Parquet file does not have GeoParquet metadata, the values of version, primary_column and columns fields of the resulting dataframe will be null.

Note

geoparquet.metadata only supports reading GeoParquet specific metadata. Users can use G-Research/spark-extension to read comprehensive metadata of generic Parquet files.

Load data from JDBC data sources

The 'query' option in Spark SQL's JDBC data source can be used to convert geometry columns to a format that Sedona can interpret. This should work for most spatial JDBC data sources. For Postgis there is no need to add a query to convert geometry types since it's already using EWKB as it's wire format.

// For any JDBC data source, including Postgis.
val df = sedona.read.format("jdbc")
    // Other options.
    .option("query", "SELECT id, ST_AsBinary(geom) as geom FROM my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))

// This is a simplified version that works for Postgis.
val df = sedona.read.format("jdbc")
    // Other options.
    .option("dbtable", "my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))
// For any JDBC data source, including Postgis.
Dataset<Row> df = sedona.read().format("jdbc")
    // Other options.
    .option("query", "SELECT id, ST_AsBinary(geom) as geom FROM my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))

// This is a simplified version that works for Postgis.
Dataset<Row> df = sedona.read().format("jdbc")
    // Other options.
    .option("dbtable", "my_table")
    .load()
    .withColumn("geom", expr("ST_GeomFromWKB(geom)"))
# For any JDBC data source, including Postgis.
df = (sedona.read.format("jdbc")
    # Other options.
    .option("query", "SELECT id, ST_AsBinary(geom) as geom FROM my_table")
    .load()
    .withColumn("geom", f.expr("ST_GeomFromWKB(geom)")))

# This is a simplified version that works for Postgis.
df = (sedona.read.format("jdbc")
    # Other options.
    .option("dbtable", "my_table")
    .load()
    .withColumn("geom", f.expr("ST_GeomFromWKB(geom)")))

Load from geopackage

Since v1.7.0, Sedona supports loading Geopackage file format as a DataFrame.

val df = sedona.read.format("geopackage").option("tableName", "tab").load("/path/to/geopackage")
Dataset<Row> df = sedona.read().format("geopackage").option("tableName", "tab").load("/path/to/geopackage")
df = sedona.read.format("geopackage").option("tableName", "tab").load("/path/to/geopackage")

Geopackage files can contain vector data and raster data. To show the possible options from a file you can look into the metadata table by adding parameter showMetadata and set its value as true.

val df = sedona.read.format("geopackage").option("showMetadata", "true").load("/path/to/geopackage")
Dataset<Row> df = sedona.read().format("geopackage").option("showMetadata", "true").load("/path/to/geopackage")

```python df = sedona.read.format("geopackage").option("showMetadata", "true").load("/path/to/geopackage")

Then you can see the metadata of the geopackage file like below.

+--------------------+---------+--------------------+-----------+--------------------+----------+-----------------+----------+----------+------+
|          table_name|data_type|          identifier|description|         last_change|     min_x|            min_y|     max_x|     max_y|srs_id|
+--------------------+---------+--------------------+-----------+--------------------+----------+-----------------+----------+----------+------+
|gis_osm_water_a_f...| features|gis_osm_water_a_f...|           |2024-09-30 23:07:...|-9.0257084|57.96814069999999|33.4866675|80.4291867|  4326|
+--------------------+---------+--------------------+-----------+--------------------+----------+-----------------+----------+----------+------+

You can also load data from raster tables in the geopackage file. To load raster data, you can use the following code.

val df = sedona.read.format("geopackage").option("tableName", "raster_table").load("/path/to/geopackage")
Dataset<Row> df = sedona.read().format("geopackage").option("tableName", "raster_table").load("/path/to/geopackage")
df = sedona.read.format("geopackage").option("tableName", "raster_table").load("/path/to/geopackage")
+---+----------+-----------+--------+--------------------+
| id|zoom_level|tile_column|tile_row|           tile_data|
+---+----------+-----------+--------+--------------------+
|  1|        11|        428|     778|GridCoverage2D["c...|
|  2|        11|        429|     778|GridCoverage2D["c...|
|  3|        11|        428|     779|GridCoverage2D["c...|
|  4|        11|        429|     779|GridCoverage2D["c...|
|  5|        11|        427|     777|GridCoverage2D["c...|
+---+----------+-----------+--------+--------------------+

Known limitations (v1.7.0):

  • webp rasters are not supported
  • ewkb geometries are not supported
  • filtering based on geometries envelopes are not supported

All points above should be resolved soon, stay tuned !

Transform the Coordinate Reference System

Sedona doesn't control the coordinate unit (degree-based or meter-based) of all geometries in a Geometry column. The unit of all related distances in SedonaSQL is same as the unit of all geometries in a Geometry column.

By default, this function uses lon/lat order since v1.5.0. Before, it used lat/lon order. You can use ST_FlipCoordinates to swap X and Y.

For more details, please read the ST_Transform section in Sedona API References.

To convert Coordinate Reference System of the Geometry column created before, use the following code:

SELECT ST_Transform(countyshape, "epsg:4326", "epsg:3857") AS newcountyshape, _c1, _c2, _c3, _c4, _c5, _c6, _c7
FROM spatialdf

The first EPSG code EPSG:4326 in ST_Transform is the source CRS of the geometries. It is WGS84, the most common degree-based CRS.

The second EPSG code EPSG:3857 in ST_Transform is the target CRS of the geometries. It is the most common meter-based CRS.

This ST_Transform transform the CRS of these geometries from EPSG:4326 to EPSG:3857. The details CRS information can be found on EPSG.io

The coordinates of polygons have been changed. The output will be like this:

+--------------------+---+---+--------+-----+-----------+--------------------+---+
|      newcountyshape|_c1|_c2|     _c3|  _c4|        _c5|                 _c6|_c7|
+--------------------+---+---+--------+-----+-----------+--------------------+---+
|POLYGON ((-108001...| 31|039|00835841|31039|     Cuming|       Cuming County| 06|
|POLYGON ((-137408...| 53|069|01513275|53069|  Wahkiakum|    Wahkiakum County| 06|
|POLYGON ((-116403...| 35|011|00933054|35011|    De Baca|      De Baca County| 06|
|POLYGON ((-107880...| 31|109|00835876|31109|  Lancaster|    Lancaster County| 06|

Cluster with DBSCAN

Sedona provides an implementation of the DBSCAN algorithm to cluster spatial data.

The algorithm is available as a Scala and Python function called on a spatial dataframe. The returned dataframe has an additional column added containing the unique identifier of the cluster that record is a member of and a boolean column indicating if the record is a core point.

The first parameter is the dataframe, the next two are the epsilon and min_points parameters of the DBSCAN algorithm.

import org.apache.sedona.stats.clustering.DBSCAN.dbscan

dbscan(df, 0.1, 5).show()
import org.apache.sedona.stats.clustering.DBSCAN;

DBSCAN.dbscan(df, 0.1, 5).show();
from sedona.stats.clustering.dbscan import dbscan

dbscan(df, 0.1, 5).show()

The output will look like this:

+----------------+---+------+-------+
|        geometry| id|isCore|cluster|
+----------------+---+------+-------+
|   POINT (2.5 4)|  3| false|      1|
|     POINT (3 4)|  2| false|      1|
|     POINT (3 5)|  5| false|      1|
|     POINT (1 3)|  9|  true|      0|
| POINT (2.5 4.5)|  7|  true|      1|
|     POINT (1 2)|  1|  true|      0|
| POINT (1.5 2.5)|  4|  true|      0|
| POINT (1.2 2.5)|  8|  true|      0|
|   POINT (1 2.5)| 11|  true|      0|
|     POINT (1 5)| 10| false|     -1|
|     POINT (5 6)| 12| false|     -1|
|POINT (12.8 4.5)|  6| false|     -1|
|     POINT (4 3)| 13| false|     -1|
+----------------+---+------+-------+

Calculate the Local Outlier Factor (LOF)

Sedona provides an implementation of the Local Outlier Factor algorithm to identify anomalous data.

The algorithm is available as a Scala and Python function called on a spatial dataframe. The returned dataframe has an additional column added containing the local outlier factor.

The first parameter is the dataframe, the next is the number of nearest neighbors to consider use in calculating the score.

import org.apache.sedona.stats.outlierDetection.LocalOutlierFactor.localOutlierFactor

localOutlierFactor(df, 20).show()
import org.apache.sedona.stats.outlierDetection.LocalOutlierFactor;

LocalOutlierFactor.localOutlierFactor(df, 20).show();
from sedona.stats.outlier_detection.local_outlier_factor import local_outlier_factor

local_outlier_factor(df, 20).show()

The output will look like this:

+--------------------+------------------+
|            geometry|               lof|
+--------------------+------------------+
|POINT (-2.0231305...| 0.952098153363662|
|POINT (-2.0346944...|0.9975325496668104|
|POINT (-2.2040074...|1.0825843906411081|
|POINT (1.61573501...|1.7367129352162634|
|POINT (-2.1176324...|1.5714144683150393|
|POINT (-2.2349759...|0.9167275845938276|
|POINT (1.65470192...| 1.046231536764447|
|POINT (0.62624112...|1.1988700676990034|
|POINT (2.01746261...|1.1060219481067417|
|POINT (-2.0483857...|1.0775553430145446|
|POINT (2.43969463...|1.1129132178576646|
|POINT (-2.2425480...| 1.104108012697006|
|POINT (-2.7859235...|  2.86371824574529|
|POINT (-1.9738858...|1.0398822680356794|
|POINT (2.00153403...| 0.927409656346015|
|POINT (2.06422812...|0.9222203762264445|
|POINT (-1.7533819...|1.0273650471626696|
|POINT (-2.2030766...| 0.964744555830738|
|POINT (-1.8509857...|1.0375927869698574|
|POINT (2.10849080...|1.0753419197322656|
+--------------------+------------------+

Perform Getis-Ord Gi(*) Hot Spot Analysis

Sedona provides an implementation of the Gi and Gi* algorithms to identify local hotspots in spatial data

The algorithm is available as a Scala and Python function called on a spatial dataframe. The returned dataframe has additional columns added containing G statistic, E[G], V[G], the Z score, and the p-value.

Using Gi involves first generating the neighbors list for each record, then calling the g_local function.

import org.apache.sedona.stats.Weighting.addBinaryDistanceBandColumn
import org.apache.sedona.stats.hotspotDetection.GetisOrd.gLocal

val distanceRadius = 1.0
val weightedDf = addBinaryDistanceBandColumn(df, distanceRadius)
gLocal(weightedDf, "val").show()
import org.apache.sedona.stats.Weighting;
import org.apache.sedona.stats.hotspotDetection.GetisOrd;
import org.apache.spark.sql.DataFrame;

double distanceRadius = 1.0;
DataFrame weightedDf = Weighting.addBinaryDistanceBandColumn(df, distanceRadius);
GetisOrd.gLocal(weightedDf, "val").show();
from sedona.stats.weighting import add_binary_distance_band_column
from sedona.stats.hotspot_detection.getis_ord import g_local

distance_radius = 1.0
weighted_df = addBinaryDistanceBandColumn(df, distance_radius)
g_local(weightedDf, "val").show()

The output will look like this:


+-----------+---+--------------------+-------------------+-------------------+--------------------+--------------------+--------------------+
|   geometry|val|             weights|                  G|                 EG|                  VG|                   Z|                   P|
+-----------+---+--------------------+-------------------+-------------------+--------------------+--------------------+--------------------+
|POINT (2 2)|0.9|[{{POINT (2 3), 1...| 0.4488188976377953|0.45454545454545453| 0.00356321373799772|-0.09593402008347063|  0.4617864875295957|
|POINT (2 3)|1.2|[{{POINT (2 2), 0...|0.35433070866141736|0.36363636363636365|0.003325666155464539|-0.16136436037034918|  0.4359032175415549|
|POINT (3 3)|1.2|[{{POINT (2 3), 1...|0.28346456692913385| 0.2727272727272727|0.002850570990398176| 0.20110780337013057| 0.42030714022155924|
|POINT (3 2)|1.2|[{{POINT (2 2), 0...| 0.4488188976377953|0.45454545454545453| 0.00356321373799772|-0.09593402008347063|  0.4617864875295957|
|POINT (3 1)|1.2|[{{POINT (3 2), 3...| 0.3622047244094489| 0.2727272727272727|0.002850570990398176|  1.6758983614177538| 0.04687905137429871|
|POINT (2 1)|2.2|[{{POINT (2 2), 0...| 0.4330708661417323|0.36363636363636365|0.003325666155464539|  1.2040263812249166| 0.11428969105925013|
|POINT (1 1)|1.2|[{{POINT (2 1), 5...| 0.2834645669291339| 0.2727272727272727|0.002850570990398176|  0.2011078033701316|  0.4203071402215588|
|POINT (1 2)|0.2|[{{POINT (2 2), 0...|0.35433070866141736|0.45454545454545453| 0.00356321373799772|   -1.67884535146075|0.046591093685710794|
|POINT (1 3)|1.2|[{{POINT (2 3), 1...| 0.2047244094488189| 0.2727272727272727|0.002850570990398176| -1.2736827546774914| 0.10138793530151635|
|POINT (0 2)|1.0|[{{POINT (1 2), 7...|0.09448818897637795|0.18181818181818182|0.002137928242798632| -1.8887168824332323|0.029464887612748458|
|POINT (4 2)|1.2|[{{POINT (3 2), 3...| 0.1889763779527559|0.18181818181818182|0.002137928242798632| 0.15481285921583854| 0.43848442662481324|
+-----------+---+--------------------+-------------------+-------------------+--------------------+--------------------+--------------------+

Run spatial queries

After creating a Geometry type column, you are able to run spatial queries.

Range query

Use ST_Contains, ST_Intersects, ST_Within to run a range query over a single column.

The following example finds all counties that are within the given polygon:

SELECT *
FROM spatialdf
WHERE ST_Contains (ST_PolygonFromEnvelope(1.0,100.0,1000.0,1100.0), newcountyshape)

Note

Read SedonaSQL constructor API to learn how to create a Geometry type query window

KNN query

Use ST_Distance to calculate the distance and rank the distance.

The following code returns the 5 nearest neighbor of the given polygon.

SELECT countyname, ST_Distance(ST_PolygonFromEnvelope(1.0,100.0,1000.0,1100.0), newcountyshape) AS distance
FROM spatialdf
ORDER BY distance DESC
LIMIT 5

Join query

The details of a join query is available here Join query.

KNN join query

The details of a KNN join query is available here KNN join query.

Other queries

There are lots of other functions can be combined with these queries. Please read SedonaSQL functions and SedonaSQL aggregate functions.

Visualize query results

Sedona provides SedonaPyDeck and SedonaKepler wrappers, both of which expose APIs to create interactive map visualizations from SedonaDataFrames in a Jupyter environment.

Note

Both SedonaPyDeck and SedonaKepler expect the default geometry order to be lon-lat. If your dataframe has geometries in the lat-lon order, please check out ST_FlipCoordinates

Note

Both SedonaPyDeck and SedonaKepler are designed to work with SedonaDataFrames containing only 1 geometry column. Passing dataframes with multiple geometry columns will cause errors.

SedonaPyDeck

Spatial query results can be visualized in a Jupyter lab/notebook environment using SedonaPyDeck.

SedonaPyDeck exposes APIs to create interactive map visualizations using pydeck based on deck.gl

Note

To use SedonaPyDeck, install sedona with the pydeck-map extra:

pip install sedona[pydeck-map]

The following tutorial showcases the various maps that can be created using SedonaPyDeck, the datasets used to create these maps are publicly available.

Each API exposed by SedonaPyDeck offers customization via optional arguments, details on all possible arguments can be found in the API docs of SedonaPyDeck.

Creating a Choropleth map using SedonaPyDeck

SedonaPyDeck exposes a create_choropleth_map API which can be used to visualize a choropleth map out of the passed SedonaDataFrame containing polygons with an observation:

Example (referenced from example notebook available via binder):

SedonaPyDeck.create_choropleth_map(df=groupedresult, plot_col='AirportCount')

Note

plot_col is a required argument informing SedonaPyDeck of the column name used to render the choropleth effect.

Creating a Choropleth map using SedonaPyDeck

The dataset used is available here and can also be found in the example notebook available here

Creating a Geometry map using SedonaPyDeck

SedonaPyDeck exposes a create_geometry_map API which can be used to visualize a passed SedonaDataFrame containing any type of geometries:

Example (referenced from overture notebook available via binder):

SedonaPyDeck.create_geometry_map(df_building, elevation_col='height')

Creating a Geometry map using SedonaPyDeck

Tip

elevation_col is an optional argument which can be used to render a 3D map. Pass the column with 'elevation' values for the geometries here.

Creating a Scatterplot map using SedonaPyDeck

SedonaPyDeck exposes a create_scatterplot_map API which can be used to visualize a scatterplot out of the passed SedonaDataFrame containing points:

Example:

SedonaPyDeck.create_scatterplot_map(df=crimes_df)

Creating a Scatterplot map using SedonaPyDeck

The dataset used here is the Chicago crimes dataset, available here

Creating a heatmap using SedonaPyDeck

SedonaPyDeck exposes a create_heatmap API which can be used to visualize a heatmap out of the passed SedonaDataFrame containing points:

Example:

SedonaPyDeck.create_heatmap(df=crimes_df)

Creating a heatmap using SedonaPyDeck

The dataset used here is the Chicago crimes dataset, available here

SedonaKepler

Spatial query results can be visualized in a Jupyter lab/notebook environment using SedonaKepler.

SedonaKepler exposes APIs to create interactive and customizable map visualizations using KeplerGl.

Note

To use SedonaKepler, install sedona with the kepler-map extra:

pip install sedona[kepler-map]

This tutorial showcases how simple it is to instantly visualize geospatial data using SedonaKepler.

Example (referenced from an example notebook via the binder):

SedonaKepler.create_map(df=groupedresult, name="AirportCount")

Visualize geospatial data using SedonaKepler

The dataset used is available here and can also be found in the example notebook available here

Details on all the APIs available by SedonaKepler are listed in the SedonaKepler API docs

Create a User-Defined Function (UDF)

User-Defined Functions (UDFs) are user-created procedures that can perform operations on a single row of information. To cover almost all use cases, we will showcase 4 types of UDFs for a better understanding of how to use geometry with UDFs. Sedona's serializer deserializes the SQL geometry type to JTS Geometry (Scala/Java) or Shapely Geometry (Python). You can implement any custom logic using the rich ecosystem around these two libraries.

Geometry to primitive

This UDF example takes a geometry type input and returns a primitive type output:

import org.locationtech.jts.geom.Geometry
import org.apache.spark.sql.types._

def lengthPoly(geom: Geometry): Double = {
    geom.getLength
}

sedona.udf.register("udf_lengthPoly", lengthPoly _)

df.selectExpr("udf_lengthPoly(geom)").show()
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.types.DataTypes;

// using lambda function to register the UDF
sparkSession.udf().register(
        "udf_lengthPoly",
        (UDF1<Geometry, Double>) Geometry::getLength,
        DataTypes.DoubleType);

df.selectExpr("udf_lengthPoly(geom)").show()
from sedona.sql.types import GeometryType
from pyspark.sql.types import DoubleType

def lengthPoly(geom: GeometryType()):
    return geom.length

sedona.udf.register("udf_lengthPoly", lengthPoly, DoubleType())

df.selectExpr("udf_lengthPoly(geom)").show()

Output:

+--------------------+
|udf_lengthPoly(geom)|
+--------------------+
|   3.414213562373095|
+--------------------+

Geometry to Geometry

This UDF example takes a geometry type input and returns a geometry type output:

import org.locationtech.jts.geom.Geometry
import org.apache.spark.sql.types._

def bufferFixed(geom: Geometry): Geometry = {
    geom.buffer(5.5)
}

sedona.udf.register("udf_bufferFixed", bufferFixed _)

df.selectExpr("udf_bufferFixed(geom)").show()
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.types.DataTypes;

// using lambda function to register the UDF
sparkSession.udf().register(
        "udf_bufferFixed",
        (UDF1<Geometry, Geometry>) geom ->
            geom.buffer(5.5),
        new GeometryUDT());

df.selectExpr("udf_bufferFixed(geom)").show()
from sedona.sql.types import GeometryType
from pyspark.sql.types import DoubleType

def bufferFixed(geom: GeometryType()):
    return geom.buffer(5.5)

sedona.udf.register("udf_bufferFixed", bufferFixed, GeometryType())

df.selectExpr("udf_bufferFixed(geom)").show()

Output:

+--------------------------------------------------+
|                             udf_bufferFixed(geom)|
+--------------------------------------------------+
|POLYGON ((1 -4.5, -0.0729967710887076 -4.394319...|
+--------------------------------------------------+

Geometry, primitive to geometry

This UDF example takes a geometry type input and a primitive type input and returns a geometry type output:

import org.locationtech.jts.geom.Geometry
import org.apache.spark.sql.types._

def bufferIt(geom: Geometry, distance: Double): Geometry = {
    geom.buffer(distance)
}

sedona.udf.register("udf_buffer", bufferIt _)

df.selectExpr("udf_buffer(geom, distance)").show()
import org.apache.spark.sql.api.java.UDF2;
import org.apache.spark.sql.types.DataTypes;

// using lambda function to register the UDF
sparkSession.udf().register(
        "udf_buffer",
        (UDF2<Geometry, Double, Geometry>) Geometry::buffer,
        new GeometryUDT());

df.selectExpr("udf_buffer(geom, distance)").show()
from sedona.sql.types import GeometryType
from pyspark.sql.types import DoubleType

def bufferIt(geom: GeometryType(), distance: DoubleType()):
    return geom.buffer(distance)

sedona.udf.register("udf_buffer", bufferIt, GeometryType())

df.selectExpr("udf_buffer(geom, distance)").show()

Output:

+--------------------------------------------------+
|                        udf_buffer(geom, distance)|
+--------------------------------------------------+
|POLYGON ((1 -9, -0.9509032201612866 -8.80785280...|
+--------------------------------------------------+

Geometry, primitive to Geometry, primitive

This UDF example takes a geometry type input and a primitive type input and returns a geometry type and a primitive type output:

import org.locationtech.jts.geom.Geometry
import org.apache.spark.sql.types._
import org.apache.spark.sql.api.java.UDF2

val schemaUDF = StructType(Array(
    StructField("buffed", GeometryUDT),
    StructField("length", DoubleType)
))

val udf_bufferLength = udf(
    new UDF2[Geometry, Double, (Geometry, Double)] {
        def call(geom: Geometry, distance: Double): (Geometry, Double) = {
            val buffed = geom.buffer(distance)
            val length = geom.getLength
            (buffed, length)
        }
    }, schemaUDF)

sedona.udf.register("udf_bufferLength", udf_bufferLength)

data.withColumn("bufferLength", expr("udf_bufferLengths(geom, distance)"))
    .select("geom", "distance", "bufferLength.*")
    .show()
import org.apache.spark.sql.api.java.UDF2;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;

StructType schemaUDF = new StructType()
            .add("buffedGeom", new GeometryUDT())
            .add("length", DataTypes.DoubleType);

// using lambda function to register the UDF
sparkSession.udf().register("udf_bufferLength",
            (UDF2<Geometry, Double, Tuple2<Geometry, Double>>) (geom, distance) -> {
                Geometry buffed = geom.buffer(distance);
                Double length = buffed.getLength();
                return new Tuple2<>(buffed, length);
            },
            schemaUDF);

df.withColumn("bufferLength", functions.expr("udf_bufferLength(geom, distance)"))
            .select("geom", "distance", "bufferLength.*")
            .show();
from sedona.sql.types import GeometryType
from pyspark.sql.types import *

schemaUDF = StructType([
    StructField("buffed", GeometryType()),
    StructField("length", DoubleType())
])

def bufferAndLength(geom: GeometryType(), distance: DoubleType()):
    buffed = geom.buffer(distance)
    length = buffed.length
    return [buffed, length]

sedona.udf.register("udf_bufferLength", bufferAndLength, schemaUDF)

df.withColumn("bufferLength", expr("udf_bufferLength(geom, buffer)")) \
            .select("geom", "buffer", "bufferLength.*") \
            .show()

Output:

+------------------------------+--------+--------------------------------------------------+-----------------+
|                          geom|distance|                                        buffedGeom|           length|
+------------------------------+--------+--------------------------------------------------+-----------------+
|POLYGON ((1 1, 1 2, 2 1, 1 1))|    10.0|POLYGON ((1 -9, -0.9509032201612866 -8.80785280...|66.14518337329191|
+------------------------------+--------+--------------------------------------------------+-----------------+

Save to permanent storage

To save a Spatial DataFrame to some permanent storage such as Hive tables and HDFS, you can simply convert each geometry in the Geometry type column back to a plain String and save the plain DataFrame to wherever you want.

Use the following code to convert the Geometry column in a DataFrame back to a WKT string column:

SELECT ST_AsText(countyshape)
FROM polygondf

Save as GeoJSON

Since v1.6.1, the GeoJSON data source in Sedona can be used to save a Spatial DataFrame to a single-line JSON file, with geometries written in GeoJSON format.

df.write.format("geojson").save("YOUR/PATH.json")

The structure of the generated file will be like this:

{"type":"Feature","geometry":{"type":"Point","coordinates":[102.0,0.5]},"properties":{"prop0":"value0"}}
{"type":"Feature","geometry":{"type":"LineString","coordinates":[[102.0,0.0],[103.0,1.0],[104.0,0.0],[105.0,1.0]]},"properties":{"prop0":"value1"}}
{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[100.0,0.0],[101.0,0.0],[101.0,1.0],[100.0,1.0],[100.0,0.0]]]},"properties":{"prop0":"value2"}}

Save GeoParquet

Since v1.3.0, Sedona natively supports writing GeoParquet file. GeoParquet can be saved as follows:

df.write.format("geoparquet").save(geoparquetoutputlocation + "/GeoParquet_File_Name.parquet")

CRS Metadata

Since v1.5.1, Sedona supports writing GeoParquet files with custom GeoParquet spec version and crs. The default GeoParquet spec version is 1.0.0 and the default crs is null. You can specify the GeoParquet spec version and crs as follows:

val projjson = "{...}" // PROJJSON string for all geometry columns
df.write.format("geoparquet")
        .option("geoparquet.version", "1.0.0")
        .option("geoparquet.crs", projjson)
        .save(geoparquetoutputlocation + "/GeoParquet_File_Name.parquet")

If you have multiple geometry columns written to the GeoParquet file, you can specify the CRS for each column. For example, g0 and g1 are two geometry columns in the DataFrame df, and you want to specify the CRS for each column as follows:

val projjson_g0 = "{...}" // PROJJSON string for g0
val projjson_g1 = "{...}" // PROJJSON string for g1
df.write.format("geoparquet")
        .option("geoparquet.version", "1.0.0")
        .option("geoparquet.crs.g0", projjson_g0)
        .option("geoparquet.crs.g1", projjson_g1)
        .save(geoparquetoutputlocation + "/GeoParquet_File_Name.parquet")

The value of geoparquet.crs and geoparquet.crs.<column_name> can be one of the following:

  • "null": Explicitly setting crs field to null. This is the default behavior.
  • "" (empty string): Omit the crs field. This implies that the CRS is OGC:CRS84 for CRS-aware implementations.
  • "{...}" (PROJJSON string): The crs field will be set as the PROJJSON object representing the Coordinate Reference System (CRS) of the geometry. You can find the PROJJSON string of a specific CRS from here: https://epsg.io/ (click the JSON option at the bottom of the page). You can also customize your PROJJSON string as needed.

Please note that Sedona currently cannot set/get a projjson string to/from a CRS. Its geoparquet reader will ignore the projjson metadata and you will have to set your CRS via ST_SetSRID after reading the file. Its geoparquet writer will not leverage the SRID field of a geometry so you will have to always set the geoparquet.crs option manually when writing the file, if you want to write a meaningful CRS field.

Due to the same reason, Sedona geoparquet reader and writer do NOT check the axis order (lon/lat or lat/lon) and assume they are handled by the users themselves when writing / reading the files. You can always use ST_FlipCoordinates to swap the axis order of your geometries.

Covering Metadata

Since v1.6.1, Sedona supports writing the covering field to geometry column metadata. The covering field specifies a bounding box column to help accelerate spatial data retrieval. The bounding box column should be a top-level struct column containing xmin, ymin, xmax, ymax columns. If the DataFrame you are writing contains such columns, you can specify .option("geoparquet.covering.<geometryColumnName>", "<coveringColumnName>") option to write covering metadata to GeoParquet files:

df.write.format("geoparquet")
        .option("geoparquet.covering.geometry", "bbox")
        .save("/path/to/saved_geoparquet.parquet")

If the DataFrame has only one geometry column, you can simply specify the geoparquet.covering option and omit the geometry column name:

df.write.format("geoparquet")
        .option("geoparquet.covering", "bbox")
        .save("/path/to/saved_geoparquet.parquet")

If the DataFrame does not have a covering column, you can construct one using Sedona's SQL functions:

val df_bbox = df.withColumn("bbox", expr("struct(ST_XMin(geometry) AS xmin, ST_YMin(geometry) AS ymin, ST_XMax(geometry) AS xmax, ST_YMax(geometry) AS ymax)"))
df_bbox.write.format("geoparquet").option("geoparquet.covering.geometry", "bbox").save("/path/to/saved_geoparquet.parquet")

Sort then Save GeoParquet

To maximize the performance of Sedona GeoParquet filter pushdown, we suggest that you sort the data by their geohash values (see ST_GeoHash) and then save as a GeoParquet file. An example is as follows:

SELECT col1, col2, geom, ST_GeoHash(geom, 5) as geohash
FROM spatialDf
ORDER BY geohash

Save to Postgis

Unfortunately, the Spark SQL JDBC data source doesn't support creating geometry types in PostGIS using the 'createTableColumnTypes' option. Only the Spark built-in types are recognized. This means that you'll need to manage your PostGIS schema separately from Spark. One way to do this is to create the table with the correct geometry column before writing data to it with Spark. Alternatively, you can write your data to the table using Spark and then manually alter the column to be a geometry type afterward.

Postgis uses EWKB to serialize geometries. If you convert your geometries to EWKB format in Sedona you don't have to do any additional conversion in Postgis.

my_postgis_db# create table my_table (id int8, geom geometry);

df.withColumn("geom", expr("ST_AsEWKB(geom)")
    .write.format("jdbc")
    .option("truncate","true") // Don't let Spark recreate the table.
    // Other options.
    .save()

// If you didn't create the table before writing you can change the type afterward.
my_postgis_db# alter table my_table alter column geom type geometry;

Convert between DataFrame and SpatialRDD

DataFrame to SpatialRDD

Use SedonaSQL DataFrame-RDD Adapter to convert a DataFrame to an SpatialRDD. Please read Adapter Scaladoc

var spatialRDD = Adapter.toSpatialRdd(spatialDf, "usacounty")
SpatialRDD spatialRDD = Adapter.toSpatialRdd(spatialDf, "usacounty")
from sedona.utils.adapter import Adapter

spatialRDD = Adapter.toSpatialRdd(spatialDf, "usacounty")

"usacounty" is the name of the geometry column

Warning

Only one Geometry type column is allowed per DataFrame.

SpatialRDD to DataFrame

Use SedonaSQL DataFrame-RDD Adapter to convert a DataFrame to an SpatialRDD. Please read Adapter Scaladoc

var spatialDf = Adapter.toDf(spatialRDD, sedona)
Dataset<Row> spatialDf = Adapter.toDf(spatialRDD, sedona)
from sedona.utils.adapter import Adapter

spatialDf = Adapter.toDf(spatialRDD, sedona)

All other attributes such as price and age will be also brought to the DataFrame as long as you specify carryOtherAttributes (see Read other attributes in an SpatialRDD).

You may also manually specify a schema for the resulting DataFrame in case you require different column names or data types. Note that string schemas and not all data types are supported—please check the Adapter Scaladoc to confirm what is supported for your use case. At least one column for the user data must be provided.

val schema = StructType(Array(
  StructField("county", GeometryUDT, nullable = true),
  StructField("name", StringType, nullable = true),
  StructField("price", DoubleType, nullable = true),
  StructField("age", IntegerType, nullable = true)
))
val spatialDf = Adapter.toDf(spatialRDD, schema, sedona)

SpatialPairRDD to DataFrame

PairRDD is the result of a spatial join query or distance join query. SedonaSQL DataFrame-RDD Adapter can convert the result to a DataFrame. But you need to provide the name of other attributes.

var joinResultDf = Adapter.toDf(joinResultPairRDD, Seq("left_attribute1", "left_attribute2"), Seq("right_attribute1", "right_attribute2"), sedona)
import scala.collection.JavaConverters;

List leftFields = new ArrayList<>(Arrays.asList("c1", "c2", "c3"));
List rightFields = new ArrayList<>(Arrays.asList("c4", "c5", "c6"));
Dataset joinResultDf = Adapter.toDf(joinResultPairRDD, JavaConverters.asScalaBuffer(leftFields).toSeq(), JavaConverters.asScalaBuffer(rightFields).toSeq(), sedona);
from sedona.utils.adapter import Adapter

joinResultDf = Adapter.toDf(jvm_sedona_rdd, ["poi_from_id", "poi_from_name"], ["poi_to_id", "poi_to_name"], spark))

or you can use the attribute names directly from the input RDD

import scala.collection.JavaConversions._
var joinResultDf = Adapter.toDf(joinResultPairRDD, leftRdd.fieldNames, rightRdd.fieldNames, sedona)
import scala.collection.JavaConverters;
Dataset joinResultDf = Adapter.toDf(joinResultPairRDD, JavaConverters.asScalaBuffer(leftRdd.fieldNames).toSeq(), JavaConverters.asScalaBuffer(rightRdd.fieldNames).toSeq(), sedona);
from sedona.utils.adapter import Adapter

joinResultDf = Adapter.toDf(result_pair_rdd, leftRdd.fieldNames, rightRdd.fieldNames, spark)

All other attributes such as price and age will be also brought to the DataFrame as long as you specify carryOtherAttributes (see Read other attributes in an SpatialRDD).

You may also manually specify a schema for the resulting DataFrame in case you require different column names or data types. Note that string schemas and not all data types are supported—please check the Adapter Scaladoc to confirm what is supported for your use case. Columns for the left and right user data must be provided.

val schema = StructType(Array(
  StructField("leftGeometry", GeometryUDT, nullable = true),
  StructField("name", StringType, nullable = true),
  StructField("price", DoubleType, nullable = true),
  StructField("age", IntegerType, nullable = true),
  StructField("rightGeometry", GeometryUDT, nullable = true),
  StructField("category", StringType, nullable = true)
))
val joinResultDf = Adapter.toDf(joinResultPairRDD, schema, sedona)