Source code for sedona.spark.core.SpatialRDD.linestring_rdd

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from pyspark import RDD, SparkContext

from sedona.spark.core.enums import FileDataSplitter
from sedona.spark.core.enums.file_data_splitter import FileSplitterJvm
from sedona.spark.core.jvm.translate import PythonRddToJavaRDDAdapter
from sedona.spark.core.SpatialRDD.spatial_rdd import JvmSpatialRDD, SpatialRDD
from sedona.spark.core.SpatialRDD.spatial_rdd_factory import SpatialRDDFactory
from sedona.spark.utils.meta import MultipleMeta


[docs] class LineStringRDD(SpatialRDD, metaclass=MultipleMeta): def __init__(self, rdd: RDD): super().__init__(rdd.ctx) spatial_rdd = PythonRddToJavaRDDAdapter( self._jvm ).deserialize_to_linestring_raw_rdd(rdd._jrdd) srdd = self._jvm_spatial_rdd(spatial_rdd) self._srdd = srdd def __init__(self): self._do_init() self._srdd = self._jvm_spatial_rdd() def __init__(self, rawSpatialRDD: JvmSpatialRDD): """ :param rawSpatialRDD: RDD """ super().__init__(rawSpatialRDD.sc) jsrdd = rawSpatialRDD.jsrdd self._srdd = self._jvm_spatial_rdd(jsrdd) def __init__( self, sparkContext: SparkContext, InputLocation: str, startOffset: int, endOffset: int, splitter: FileDataSplitter, carryInputData: bool, partitions: int, ): """ :param sparkContext: SparkContext instance :param InputLocation: str, location for loaded file :param startOffset: int, starting offset :param endOffset: int, ending offset :param splitter: FileDataSplitter, data file splitter :param carryInputData: bool, if spatial rdd should keep non geometry attributes :param partitions: int, number of partitions """ super().__init__(sparkContext) jvm_splitter = FileSplitterJvm(self._jvm, splitter).jvm_instance self._srdd = self._jvm_spatial_rdd( self._jsc, InputLocation, startOffset, endOffset, jvm_splitter, carryInputData, partitions, ) def __init__( self, sparkContext: SparkContext, InputLocation: str, startOffset: int, endOffset: int, splitter: FileDataSplitter, carryInputData: bool, ): """ :param sparkContext: SparkContext instance :param InputLocation: str, location for loaded file :param startOffset: int, starting offset :param endOffset: int, ending offset :param splitter: FileDataSplitter, data file splitter :param carryInputData: bool, if spatial rdd should keep non geometry attributes """ super().__init__(sparkContext) jvm_splitter = FileSplitterJvm(self._jvm, splitter).jvm_instance self._srdd = self._jvm_spatial_rdd( self._jsc, InputLocation, startOffset, endOffset, jvm_splitter, carryInputData, ) def __init__( self, sparkContext: SparkContext, InputLocation: str, splitter: FileDataSplitter, carryInputData: bool, partitions: int, ): """ :param sparkContext: SparkContext instance :param InputLocation: str, location for loaded file :param splitter: FileDataSplitter, data file splitter :param carryInputData: bool, if spatial rdd should keep non geometry attributes :param partitions: int, number of partitions """ super().__init__(sparkContext) jvm_splitter = FileSplitterJvm(self._jvm, splitter).jvm_instance self._srdd = self._jvm_spatial_rdd( self._jsc, InputLocation, jvm_splitter, carryInputData, partitions ) def __init__( self, sparkContext: SparkContext, InputLocation: str, splitter: FileDataSplitter, carryInputData: bool, ): """ :param sparkContext: SparkContext instance :param InputLocation: str, location for loaded file :param splitter: FileDataSplitter, data file splitter :param carryInputData: bool, if spatial rdd should keep non geometry attributes """ super().__init__(sparkContext) jvm_splitter = FileSplitterJvm(self._jvm, splitter).jvm_instance self._srdd = self._jvm_spatial_rdd( self._jsc, InputLocation, jvm_splitter, carryInputData ) @property def _jvm_spatial_rdd(self): if self._sc is not None: spatial_factory = SpatialRDDFactory(self._sc) else: raise TypeError("Please initialize spark Session first") return spatial_factory.create_linestring_rdd()
[docs] def MinimumBoundingRectangle(self): from sedona.spark.core.SpatialRDD import RectangleRDD rectangle_rdd = RectangleRDD() srdd = self._srdd.MinimumBoundingRectangle() rectangle_rdd.set_srdd(srdd) return rectangle_rdd