STAC catalog with Apache Sedona and Spark¶
The STAC data source allows you to read data from a SpatioTemporal Asset Catalog (STAC) API. The data source supports reading STAC items and collections.
Usage¶
To use the STAC data source, you can load a STAC catalog into a Sedona DataFrame using the stac format. The path can be either a local STAC collection JSON file or an HTTP/HTTPS endpoint to retrieve the collection JSON file.
You can load a STAC collection from a local collection file:
df = sedona.read.format("stac").load("/user/stac_collection.json")
df.printSchema()
df.show()
You can load a STAC collection from a s3 collection file object:
df = sedona.read.format("stac").load(
"s3a://example.com/stac_bucket/stac_collection.json"
)
df.printSchema()
df.show()
You can also load a STAC collection from an HTTP/HTTPS endpoint:
df = sedona.read.format("stac").load(
"https://earth-search.aws.element84.com/v1/collections/sentinel-2-pre-c1-l2a"
)
df.printSchema()
df.show()
output:
root
|-- stac_version: string (nullable = false)
|-- stac_extensions: array (nullable = true)
| |-- element: string (containsNull = true)
|-- type: string (nullable = false)
|-- id: string (nullable = false)
|-- bbox: array (nullable = true)
| |-- element: double (containsNull = true)
|-- geometry: geometry (nullable = true)
|-- title: string (nullable = true)
|-- description: string (nullable = true)
|-- datetime: timestamp (nullable = true)
|-- start_datetime: timestamp (nullable = true)
|-- end_datetime: timestamp (nullable = true)
|-- created: timestamp (nullable = true)
|-- updated: timestamp (nullable = true)
|-- platform: string (nullable = true)
|-- instruments: array (nullable = true)
| |-- element: string (containsNull = true)
|-- constellation: string (nullable = true)
|-- mission: string (nullable = true)
|-- grid:code: string (nullable = true)
|-- gsd: double (nullable = true)
|-- collection: string (nullable = true)
|-- links: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- rel: string (nullable = true)
| | |-- href: string (nullable = true)
| | |-- type: string (nullable = true)
| | |-- title: string (nullable = true)
|-- assets: map (nullable = true)
| |-- key: string
| |-- value: struct (valueContainsNull = true)
| | |-- href: string (nullable = true)
| | |-- type: string (nullable = true)
| | |-- title: string (nullable = true)
| | |-- roles: array (nullable = true)
| | | |-- element: string (containsNull = true)
+------------+--------------------+-------+--------------------+--------------------+--------------------+-----+-----------+--------------------+--------------+------------+--------------------+--------------------+-----------+-----------+-------------+-------+----+--------------------+--------------------+--------------------+
|stac_version| stac_extensions| type| id| bbox| geometry|title|description| datetime|start_datetime|end_datetime| created| updated| platform|instruments|constellation|mission| gsd| collection| links| assets|
+------------+--------------------+-------+--------------------+--------------------+--------------------+-----+-----------+--------------------+--------------+------------+--------------------+--------------------+-----------+-----------+-------------+-------+----+--------------------+--------------------+--------------------+
| 1.0.0|[https://stac-ext...|Feature|S2B_T21NYC_202212...|[-55.202493, 1.71...|POLYGON ((-55.201...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-01 21:13:...|2024-05-01 21:13:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T21NZC_202212...|[-54.30394, 1.719...|POLYGON ((-54.302...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-03 00:39:...|2024-05-03 00:39:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T22NBH_202212...|[-53.698196, 2.63...|POLYGON ((-53.698...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-03 00:26:...|2024-05-03 00:26:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T21NYD_202212...|[-55.201423, 2.62...|POLYGON ((-55.199...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-01 21:10:...|2024-05-01 21:10:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T21NZD_202212...|[-54.302336, 2.62...|POLYGON ((-54.299...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-03 00:12:...|2024-05-03 00:12:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T22NBJ_202212...|[-53.700535, 2.63...|POLYGON ((-53.700...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-03 00:30:...|2024-05-03 00:30:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T21NYE_202212...|[-55.199906, 3.52...|POLYGON ((-55.197...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-01 21:24:...|2024-05-01 21:24:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T21NZE_202212...|[-54.300062, 3.52...|POLYGON ((-54.296...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-03 00:14:...|2024-05-03 00:14:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T22NBK_202212...|[-53.703548, 3.52...|POLYGON ((-53.703...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-03 00:32:...|2024-05-03 00:32:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
| 1.0.0|[https://stac-ext...|Feature|S2B_T21NYF_202212...|[-55.197941, 4.42...|POLYGON ((-55.195...| NULL| NULL|2022-12-05 14:11:...| NULL| NULL|2024-05-01 21:43:...|2024-05-01 21:43:...|sentinel-2b| [msi]| sentinel-2| NULL|NULL|sentinel-2-pre-c1...|[{self, https://e...|{red -> {https://...|
+------------+--------------------+-------+--------------------+--------------------+--------------------+-----+-----------+--------------------+--------------+------------+--------------------+--------------------+-----------+-----------+-------------+-------+----+--------------------+--------------------+--------------------+
Filter Pushdown¶
The STAC data source supports predicate pushdown for spatial and temporal filters. The data source can push down spatial and temporal filters to the underlying data source to reduce the amount of data that needs to be read.
Spatial Filter Pushdown¶
Spatial filter pushdown allows the data source to apply spatial predicates (e.g., st_intersects) directly at the data source level, reducing the amount of data transferred and processed.
Temporal Filter Pushdown¶
Temporal filter pushdown allows the data source to apply temporal predicates (e.g., BETWEEN, >=, <=) directly at the data source level, similarly reducing the amount of data transferred and processed.
Examples¶
Here are some examples demonstrating how to query a STAC data source that is loaded into a table named STAC_TABLE.
SQL Select Without Filters¶
SELECT id, datetime as dt, geometry, bbox FROM STAC_TABLE
SQL Select With Temporal Filter¶
SELECT id, datetime as dt, geometry, bbox
FROM STAC_TABLE
WHERE datetime BETWEEN '2020-01-01' AND '2020-12-13'
In this example, the data source will push down the temporal filter to the underlying data source.
SQL Select With Spatial Filter¶
SELECT id, geometry
FROM STAC_TABLE
WHERE st_intersects(ST_GeomFromText('POLYGON((17 10, 18 10, 18 11, 17 11, 17 10))'), geometry)
In this example, the data source will push down the spatial filter to the underlying data source.
Sedona Configuration for STAC Reader¶
When using the STAC reader in Sedona, several configuration options can be set to control the behavior of the reader. These configurations are typically set in a Map[String, String] and passed to the reader. Below are the key sedona configuration options:
-
spark.sedona.stac.load.maxPartitionItemFiles: This option specifies the maximum number of item files that can be included in a single partition. It helps in controlling the size of partitions. The default value is set to -1, meaning the system will automatically determine the number of item files per partition.
-
spark.sedona.stac.load.numPartitions: This option sets the number of partitions to be created for the STAC data. It allows for better control over data distribution and parallel processing. The default value is set to -1, meaning the system will automatically determine the number of item files per partition.
Below are reader options that can be set to control the behavior of the STAC reader:
-
itemsLimitMax: This option specifies the maximum number of items to be loaded from the STAC collection. It helps in limiting the amount of data processed. The default value is set to -1, meaning all items will be loaded.
-
itemsLoadProcessReportThreshold: This option specifies the threshold for reporting the progress of item loading. It helps in monitoring the progress of the loading process. The default value is set to 1000000, meaning the progress will be reported every 1,000,000 items loaded.
-
itemsLimitPerRequest: This option specifies the maximum number of items to be requested in a single API call. It helps in controlling the size of each request. The default value is set to 10.
-
headers: This option specifies HTTP headers to include in STAC API requests. It should be a JSON-encoded string containing a dictionary of header key-value pairs. This is useful for authentication and custom headers. Example:
{"Authorization": "Basic <base64_credentials>"}
These configurations can be combined into a single Map[String, String] and passed to the STAC reader as shown below:
def defaultSparkConfig: Map[String, String] = Map(
"spark.sedona.stac.load.maxPartitionItemFiles" -> "100",
"spark.sedona.stac.load.numPartitions" -> "10",
"spark.sedona.stac.load.itemsLimitMax" -> "20")
val sparkSession: SparkSession = {
val builder = SedonaContext
.builder()
.master("local[*]")
defaultSparkConfig.foreach { case (key, value) => builder.config(key, value) }
builder.getOrCreate()
}
df = sedona.read
.format("stac")
.option("itemsLimitMax", "100")
.option("itemsLoadProcessReportThreshold", "2000000")
.option("itemsLimitPerRequest", "100")
.load("https://earth-search.aws.element84.com/v1/collections/sentinel-2-pre-c1-l2a")
These options above provide fine-grained control over how the STAC data is read and processed in Sedona.
Python API¶
The Python API allows you to interact with a SpatioTemporal Asset Catalog (STAC) API using the Client class. This class provides methods to open a connection to a STAC API, retrieve collections, and search for items with various filters.
Sample Code¶
Initialize the Client¶
from sedona.spark.stac import Client
# Initialize the client
client = Client.open("https://planetarycomputer.microsoft.com/api/stac/v1")
Search Items on a Collection Within a Year¶
items = client.search(
collection_id="aster-l1t", datetime="2020", return_dataframe=False
)
Search Items on a Collection Within a Month and Max Items¶
items = client.search(
collection_id="aster-l1t", datetime="2020-05", return_dataframe=False, max_items=5
)
Search Items with Bounding Box and Interval¶
items = client.search(
collection_id="aster-l1t",
ids=["AST_L1T_00312272006020322_20150518201805"],
bbox=[-180.0, -90.0, 180.0, 90.0],
datetime=["2006-01-01T00:00:00Z", "2007-01-01T00:00:00Z"],
return_dataframe=False,
)
Search Multiple Items with Multiple Bounding Boxes¶
bbox_list = [[-180.0, -90.0, 180.0, 90.0], [-100.0, -50.0, 100.0, 50.0]]
items = client.search(collection_id="aster-l1t", bbox=bbox_list, return_dataframe=False)
Search Items and Get DataFrame as Return with Multiple Intervals¶
interval_list = [
["2020-01-01T00:00:00Z", "2020-06-01T00:00:00Z"],
["2020-07-01T00:00:00Z", "2021-01-01T00:00:00Z"],
]
df = client.search(
collection_id="aster-l1t", datetime=interval_list, return_dataframe=True
)
df.show()
Save Items in DataFrame to GeoParquet with Both Bounding Boxes and Intervals¶
# Save items in DataFrame to GeoParquet with both bounding boxes and intervals
client.get_collection("aster-l1t").save_to_geoparquet(
output_path="/path/to/output", bbox=bbox_list, datetime="2020-05"
)
These examples demonstrate how to use the Client class to search for items in a STAC collection with various filters and return the results as either an iterator of PyStacItem objects or a Spark DataFrame.
Authentication¶
Many STAC services require authentication to access their data. The STAC client supports multiple authentication methods including HTTP Basic Authentication, Bearer Token Authentication, and custom headers.
Basic Authentication¶
Basic authentication is commonly used with API keys or username/password combinations. Many services (like Planet Labs) use API keys as the username with an empty password.
from sedona.spark.stac import Client
# Example 1: Using an API key (common pattern)
client = Client.open("https://api.example.com/stac/v1")
client.with_basic_auth("your_api_key_here", "")
# Search for items with authentication
df = client.search(collection_id="example-collection", max_items=10)
df.show()
# Example 2: Using username and password
client = Client.open("https://api.example.com/stac/v1")
client.with_basic_auth("username", "password")
df = client.search(collection_id="example-collection", max_items=10)
df.show()
# Example 3: Method chaining
df = (
Client.open("https://api.example.com/stac/v1")
.with_basic_auth("your_api_key", "")
.search(collection_id="example-collection", max_items=10)
)
df.show()
Bearer Token Authentication¶
Bearer token authentication is used with OAuth2 tokens and JWT tokens. Note that some services may only support specific authentication methods.
from sedona.spark.stac import Client
# Using a bearer token
client = Client.open("https://api.example.com/stac/v1")
client.with_bearer_token("your_access_token_here")
df = client.search(collection_id="example-collection", max_items=10)
df.show()
# Method chaining
df = (
Client.open("https://api.example.com/stac/v1")
.with_bearer_token("your_token")
.search(collection_id="example-collection", max_items=10)
)
df.show()
Custom Headers¶
You can also pass custom headers directly when creating the client, which is useful for services with non-standard authentication requirements.
from sedona.spark.stac import Client
# Using custom headers
headers = {"Authorization": "Bearer your_token_here", "X-Custom-Header": "custom_value"}
client = Client.open("https://api.example.com/stac/v1", headers=headers)
df = client.search(collection_id="example-collection", max_items=10)
df.show()
Authentication with Scala DataSource¶
When using the STAC data source directly in Scala or through Spark SQL, you can pass authentication headers as a JSON-encoded option:
import json
from pyspark.sql import SparkSession
# Prepare authentication headers
headers = {"Authorization": "Basic <base64_encoded_credentials>"}
headers_json = json.dumps(headers)
# Load STAC data with authentication
df = (
spark.read.format("stac")
.option("headers", headers_json)
.load("https://api.example.com/stac/v1/collections/example-collection")
)
df.show()
// Scala example
val headersJson = """{"Authorization":"Basic <base64_encoded_credentials>"}"""
val df = sparkSession.read
.format("stac")
.option("headers", headersJson)
.load("https://api.example.com/stac/v1/collections/example-collection")
df.show()
Important Notes¶
- Authentication methods are mutually exclusive: Setting a new authentication method will overwrite any previously set Authorization header, but other custom headers remain unchanged.
- Headers are propagated: Headers set on the Client are automatically passed to all collection and item requests.
- Service-specific requirements: Different STAC services may require different authentication methods. For example, Planet Labs requires Basic Authentication rather than Bearer tokens for collection access.
- Backward compatibility: All authentication parameters are optional. Existing code that accesses public STAC services without authentication will continue to work unchanged.
Methods¶
open(url: str, headers: Optional[dict] = None) -> Client
Opens a connection to the specified STAC API URL.
Parameters:
url(str): The URL of the STAC API to connect to. Example:"https://planetarycomputer.microsoft.com/api/stac/v1"headers(Optional[dict]): Optional dictionary of HTTP headers for authentication or custom headers. Example:{"Authorization": "Bearer token123"}
Returns:
Client: An instance of theClientclass connected to the specified URL.
with_basic_auth(username: str, password: str) -> Client
Adds HTTP Basic Authentication to the client.
This method encodes the username and password using Base64 and adds the appropriate Authorization header for HTTP Basic Authentication.
Parameters:
username(str): The username for authentication. For API keys, this is typically the API key itself. Example:"your_api_key"password(str): The password for authentication. For API keys, this is often left empty. Example:""
Returns:
Client: Returns self for method chaining.
with_bearer_token(token: str) -> Client
Adds Bearer Token Authentication to the client.
This method adds the appropriate Authorization header for Bearer Token authentication, commonly used with OAuth2 and API tokens.
Parameters:
token(str): The bearer token for authentication. Example:"your_access_token_here"
Returns:
Client: Returns self for method chaining.
get_collection(collection_id: str) -> CollectionClient
Retrieves a collection client for the specified collection ID.
Parameters:
collection_id(str): The ID of the collection to retrieve. Example:"aster-l1t"
Returns:
CollectionClient: An instance of theCollectionClientclass for the specified collection.
search(*ids: Union[str, list], collection_id: str, bbox: Optional[list] = None, datetime: Optional[Union[str, datetime.datetime, list]] = None, max_items: Optional[int] = None, return_dataframe: bool = True) -> Union[Iterator[PyStacItem], DataFrame]
Searches for items in the specified collection with optional filters.
Parameters:
ids(Union[str, list]): A variable number of item IDs to filter the items. Example:"item_id1"or["item_id1", "item_id2"]collection_id(str): The ID of the collection to search in. Example:"aster-l1t"bbox(Optional[list]): A list of bounding boxes for filtering the items, represented as[min_lon, min_lat, max_lon, max_lat]. Example:[[ -180.0, -90.0, 180.0, 90.0 ]]datetime(Optional[Union[str, datetime.datetime, list]]): A single datetime, RFC 3339-compliant timestamp, or a list of date-time ranges. Example:"2020-01-01T00:00:00Z",datetime.datetime(2020, 1, 1),[["2020-01-01T00:00:00Z", "2021-01-01T00:00:00Z"]]max_items(Optional[int]): The maximum number of items to return. Example:100return_dataframe(bool): IfTrue(default), return the result as a Spark DataFrame instead of an iterator ofPyStacItemobjects. Example:True
Returns:
- Union[Iterator[PyStacItem], DataFrame]: An iterator of
PyStacItemobjects or a Spark DataFrame that matches the specified filters.
References¶
-
STAC Specification: https://stacspec.org/
-
STAC Browser: https://github.com/radiantearth/stac-browser
-
STAC YouTube Video: https://www.youtube.com/watch?v=stac-video