Function (Snowflake)
Note
Please always keep the schema name SEDONA
(e.g., SEDONA.ST_GeomFromWKT
) when you use Sedona functions to avoid conflicting with Snowflake's built-in functions.
GeometryType¶
Introduction: Returns the type of the geometry as a string. Eg: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc. This function also indicates if the geometry is measured, by returning a string of the form 'POINTM'.
Format: GeometryType (A: Geometry)
SQL Example:
SELECT GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
Output:
geometrytype
--------------
LINESTRING
SELECT GeometryType(ST_GeomFromText('POINTM(0 0 1)'));
Output:
geometrytype
--------------
POINTM
ST_3DDistance¶
Introduction: Return the 3-dimensional minimum cartesian distance between A and B
Format: ST_3DDistance (A:geometry, B:geometry)
SQL example:
SELECT ST_3DDistance(polygondf.countyshape, polygondf.countyshape)
FROM polygondf
ST_AddPoint¶
Introduction: RETURN Linestring with additional point at the given index, if position is not available the point will be added at the end of line.
Format: ST_AddPoint(geom: geometry, point: geometry, position: integer)
Format: ST_AddPoint(geom: geometry, point: geometry)
SQL example:
SELECT ST_AddPoint(ST_GeomFromText('LINESTRING(0 0, 1 1, 1 0)'), ST_GeomFromText('Point(21 52)'), 1)
SELECT ST_AddPoint(ST_GeomFromText('Linestring(0 0, 1 1, 1 0)'), ST_GeomFromText('Point(21 52)'))
Output:
LINESTRING(0 0, 21 52, 1 1, 1 0)
LINESTRING(0 0, 1 1, 1 0, 21 52)
ST_Affine¶
Introduction: Apply an affine transformation to the given geometry.
ST_Affine has 2 overloaded signatures:
ST_Affine(geometry, a, b, c, d, e, f, g, h, i, xOff, yOff, zOff)
ST_Affine(geometry, a, b, d, e, xOff, yOff)
Based on the invoked function, the following transformation is applied:
x = a * x + b * y + c * z + xOff OR x = a * x + b * y + xOff
y = d * x + e * y + f * z + yOff OR y = d * x + e * y + yOff
z = g * x + f * y + i * z + zOff OR z = g * x + f * y + zOff
If the given geometry is empty, the result is also empty.
Format:
ST_Affine(geometry, a, b, c, d, e, f, g, h, i, xOff, yOff, zOff)
ST_Affine(geometry, a, b, d, e, xOff, yOff)
ST_Affine(geometry, 1, 2, 4, 1, 1, 2, 3, 2, 5, 4, 8, 3)
Input: LINESTRING EMPTY
Output: LINESTRING EMPTY
Input: POLYGON ((1 0 1, 1 1 1, 2 2 2, 1 0 1))
Output: POLYGON Z((9 11 11, 11 12 13, 18 16 23, 9 11 11))
Input: POLYGON ((1 0, 1 1, 2 1, 2 0, 1 0), (1 0.5, 1 0.75, 1.5 0.75, 1.5 0.5, 1 0.5))
Output: POLYGON((5 9, 7 10, 8 11, 6 10, 5 9), (6 9.5, 6.5 9.75, 7 10.25, 6.5 10, 6 9.5))
ST_Affine(geometry, 1, 2, 1, 2, 1, 2)
Input: POLYGON EMPTY
Output: POLYGON EMPTY
Input: GEOMETRYCOLLECTION (MULTIPOLYGON (((1 0, 1 1, 2 1, 2 0, 1 0), (1 0.5, 1 0.75, 1.5 0.75, 1.5 0.5, 1 0.5)), ((5 0, 5 5, 7 5, 7 0, 5 0))), POINT (10 10))
Output: GEOMETRYCOLLECTION (MULTIPOLYGON (((2 3, 4 5, 5 6, 3 4, 2 3), (3 4, 3.5 4.5, 4 5, 3.5 4.5, 3 4)), ((6 7, 16 17, 18 19, 8 9, 6 7))), POINT (31 32))
Input: POLYGON ((1 0 1, 1 1 1, 2 2 2, 1 0 1))
Output: POLYGON Z((2 3 1, 4 5 1, 7 8 2, 2 3 1))
ST_Angle¶
Introduction: Computes and returns the angle between two vectors represented by the provided points or linestrings.
There are three variants possible for ST_Angle:
ST_Angle(point1: Geometry, point2: Geometry, point3: Geometry, point4: Geometry)
Computes the angle formed by vectors represented by point1 - point2 and point3 - point4
ST_Angle(point1: Geometry, point2: Geometry, point3: Geometry)
Computes the angle formed by vectors represented by point2 - point1 and point2 - point3
ST_Angle(line1: Geometry, line2: Geometry)
Computes the angle formed by vectors S1 - E1 and S2 - E2, where S and E denote start and end points respectively
Note
If any other geometry type is provided, ST_Angle throws an IllegalArgumentException.
Additionally, if any of the provided geometry is empty, ST_Angle throws an IllegalArgumentException.
Note
If a 3D geometry is provided, ST_Angle computes the angle ignoring the z ordinate, equivalent to calling ST_Angle for corresponding 2D geometries.
Tip
ST_Angle returns the angle in radian between 0 and 2\Pi. To convert the angle to degrees, use ST_Degrees.
Format: ST_Angle(p1, p2, p3, p4) | ST_Angle(p1, p2, p3) | ST_Angle(line1, line2)
SQL Example:
SELECT ST_Angle(ST_GeomFromWKT('POINT(0 0)'), ST_GeomFromWKT('POINT (1 1)'), ST_GeomFromWKT('POINT(1 0)'), ST_GeomFromWKT('POINT(6 2)'))
Output:
0.4048917862850834
SQL Example:
SELECT ST_Angle(ST_GeomFromWKT('POINT (1 1)'), ST_GeomFromWKT('POINT (0 0)'), ST_GeomFromWKT('POINT(3 2)'))
Output:
0.19739555984988044
SQL Example:
SELECT ST_Angle(ST_GeomFromWKT('LINESTRING (0 0, 1 1)'), ST_GeomFromWKT('LINESTRING (0 0, 3 2)'))
Output:
0.19739555984988044
ST_Area¶
Introduction: Return the area of A
Format: ST_Area (A:geometry)
SQL example:
SELECT ST_Area(polygondf.countyshape)
FROM polygondf
ST_AreaSpheroid¶
Introduction: Return the geodesic area of A using WGS84 spheroid. Unit is square meter. Works better for large geometries (country level) compared to ST_Area
+ ST_Transform
. It is equivalent to PostGIS ST_Area(geography, use_spheroid=true)
function and produces nearly identical results.
Geometry must be in EPSG:4326 (WGS84) projection and must be in lat/lon order. You can use ST_FlipCoordinates to swap lat and lon.
Format: ST_AreaSpheroid (A:geometry)
SQL example:
SELECT ST_AreaSpheroid(ST_GeomFromWKT('Polygon ((35 34, 30 28, 34 25, 35 34))'))
Output: 201824850811.76245
ST_AsBinary¶
Introduction: Return the Well-Known Binary representation of a geometry
Format: ST_AsBinary (A:geometry)
SQL example:
SELECT ST_AsBinary(polygondf.countyshape)
FROM polygondf
ST_AsEWKB¶
Introduction: Return the Extended Well-Known Binary representation of a geometry. EWKB is an extended version of WKB which includes the SRID of the geometry. The format originated in PostGIS but is supported by many GIS tools. If the geometry is lacking SRID a WKB format is produced. See ST_SetSRID
Format: ST_AsEWKB (A:geometry)
SQL example:
SELECT ST_AsEWKB(polygondf.countyshape)
FROM polygondf
ST_AsEWKT¶
Introduction: Return the Extended Well-Known Text representation of a geometry. EWKT is an extended version of WKT which includes the SRID of the geometry. The format originated in PostGIS but is supported by many GIS tools. If the geometry is lacking SRID a WKT format is produced. See ST_SetSRID
Format: ST_AsEWKT (A:geometry)
SQL example:
SELECT ST_AsEWKT(polygondf.countyshape)
FROM polygondf
ST_AsGeoJSON¶
Introduction: Return the GeoJSON string representation of a geometry
Format: ST_AsGeoJSON (A:geometry)
SQL example:
SELECT ST_AsGeoJSON(polygondf.countyshape)
FROM polygondf
ST_AsGML¶
Introduction: Return the GML string representation of a geometry
Format: ST_AsGML (A:geometry)
SQL example:
SELECT ST_AsGML(polygondf.countyshape)
FROM polygondf
ST_AsKML¶
Introduction: Return the KML string representation of a geometry
Format: ST_AsKML (A:geometry)
SQL example:
SELECT ST_AsKML(polygondf.countyshape)
FROM polygondf
ST_AsText¶
Introduction: Return the Well-Known Text string representation of a geometry
Format: ST_AsText (A:geometry)
SQL example:
SELECT ST_AsText(polygondf.countyshape)
FROM polygondf
ST_Azimuth¶
Introduction: Returns Azimuth for two given points in radians null otherwise.
Format: ST_Azimuth(pointA: Point, pointB: Point)
SQL example:
SELECT ST_Azimuth(ST_POINT(0.0, 25.0), ST_POINT(0.0, 0.0))
Output: 3.141592653589793
ST_BestSRID¶
Introduction: Returns the estimated most appropriate Spatial Reference Identifier (SRID) for a given geometry, based on its spatial extent and location. It evaluates the geometry's bounding envelope and selects an SRID that optimally represents the geometry on the Earth's surface. The function prioritizes Universal Transverse Mercator (UTM), Lambert Azimuthal Equal Area (LAEA), or falls back to the Mercator projection. The function takes a WGS84 geometry and must be in lon/lat order.
- For geometries in the Arctic or Antarctic regions, the Lambert Azimuthal Equal Area projection is used.
- For geometries that fit within a single UTM zone and do not cross the International Date Line (IDL), a corresponding UTM SRID is chosen.
- In cases where none of the above conditions are met, the function defaults to the Mercator projection.
- For Geometries that cross the IDL,
ST_BestSRID
defaults the SRID to Mercator. Currently,ST_BestSRID
does not handle geometries crossing the IDL.
Warning
ST_BestSRID
is designed to estimate a suitable SRID from a set of approximately 125 EPSG codes and works best for geometries that fit within the UTM zones. It should not be solely relied upon to determine the most accurate SRID, especially for specialized or high-precision spatial requirements.
Format: ST_BestSRID(geom: Geometry)
Since: v1.6.0
SQL Example:
SELECT ST_BestSRID(ST_GeomFromWKT('POLYGON((-73.9980 40.7265, -73.9970 40.7265, -73.9970 40.7255, -73.9980 40.7255, -73.9980 40.7265))'))
Output:
32618
ST_Boundary¶
Introduction: Returns the closure of the combinatorial boundary of this Geometry.
Format: ST_Boundary(geom: geometry)
SQL example:
SELECT ST_Boundary(ST_GeomFromText('POLYGON((1 1,0 0, -1 1, 1 1))'))
Output: LINESTRING (1 1, 0 0, -1 1, 1 1)
ST_BoundingDiagonal¶
Introduction: Returns a linestring spanning minimum and maximum values of each dimension of the given geometry's coordinates as its start and end point respectively. If an empty geometry is provided, the returned LineString is also empty. If a single vertex (POINT) is provided, the returned LineString has both the start and end points same as the points coordinates
Format: ST_BoundingDiagonal(geom: Geometry)
SQL Example:
SELECT ST_BoundingDiagonal(ST_GeomFromWKT(geom))
Input: POLYGON ((1 1 1, 3 3 3, 0 1 4, 4 4 0, 1 1 1))
Output: LINESTRING Z(0 1 1, 4 4 4)
Input: POINT (10 10)
Output: LINESTRING (10 10, 10 10)
Input: GEOMETRYCOLLECTION(POLYGON ((5 5 5, -1 2 3, -1 -1 0, 5 5 5)), POINT (10 3 3))
Output: LINESTRING Z(-1 -1 0, 10 5 5)
ST_Buffer¶
Introduction: Returns a geometry/geography that represents all points whose distance from this Geometry/geography is less than or equal to distance. The function supports both Planar/Euclidean and Spheroidal/Geodesic buffering (Since v1.6.0). Spheroidal buffer also supports geometries crossing the International Date Line (IDL).
Mode of buffer calculation (Since: v1.6.0
):
The optional third parameter, useSpheroid
, controls the mode of buffer calculation.
- Planar Buffering (default): When
useSpheroid
is false,ST_Buffer
performs standard planar buffering based on the provided parameters. - Spheroidal Buffering:
- When
useSpheroid
is set to true, the function returns the spheroidal buffer polygon for more accurate representation over the Earth. In this mode, the unit of the buffer distance is interpreted as meters. - ST_Buffer first determines the most appropriate Spatial Reference Identifier (SRID) for a given geometry, based on its spatial extent and location, using
ST_BestSRID
. - The geometry is then transformed from its original SRID to the selected SRID. If the input geometry does not have a set SRID,
ST_Buffer
defaults to using WGS 84 (SRID 4326) as its original SRID. - The standard planar buffer operation is then applied in this coordinate system.
- Finally, the buffered geometry is transformed back to its original SRID, or to WGS 84 if the original SRID was not set.
- When
Note
Spheroidal buffering only supports lon/lat coordinate systems and will throw an IllegalArgumentException
for input geometries in meter based coordinate systems.
Note
Spheroidal buffering may not produce accurate output buffer for input geometries larger than a UTM zone.
Buffer Style Parameters:
The optional forth parameter controls the buffer accuracy and style. Buffer accuracy is specified by the number of line segments approximating a quarter circle, with a default of 8 segments. Buffer style can be set by providing blank-separated key=value pairs in a list format.
quad_segs=#
: Number of line segments utilized to approximate a quarter circle (default is 8).endcap=round|flat|square
: End cap style (default isround
).butt
is an accepted synonym forflat
.join=round|mitre|bevel
: Join style (default isround
).miter
is an accepted synonym formitre
.mitre_limit=#.#
: mitre ratio limit and it only affects mitred join style.miter_limit
is an accepted synonym formitre_limit
.side=both|left|right
: The optionleft
orright
enables a single-sided buffer operation on the geometry, with the buffered side aligned according to the direction of the line. This functionality is specific to LINESTRING geometry and has no impact on POINT or POLYGON geometries. By default, square end caps are applied.
Note
ST_Buffer
throws an IllegalArgumentException
if the correct format, parameters, or options are not provided.
Format:
ST_Buffer (A: Geometry, buffer: Double)
ST_Buffer (A: Geometry, buffer: Double, useSpheroid: Boolean)
ST_Buffer (A: Geometry, buffer: Double, useSpheroid: Boolean, bufferStyleParameters: String)
Since: v1.5.1
SQL Example:
SELECT ST_Buffer(ST_GeomFromWKT('POINT(0 0)'), 10)
SELECT ST_Buffer(ST_GeomFromWKT('POINT(0 0)'), 10, false, 'quad_segs=2')
Output:
8 Segments 2 Segments
SQL Example:
SELECT ST_Buffer(ST_GeomFromWKT('LINESTRING(0 0, 50 70, 100 100)'), 10, false, 'side=left')
Output:
Original Linestring Left side buffed Linestring
ST_BuildArea¶
Introduction: Returns the areal geometry formed by the constituent linework of the input geometry.
Format: ST_BuildArea (A:geometry)
Example:
SELECT ST_BuildArea(
ST_GeomFromText('MULTILINESTRING((0 0, 20 0, 20 20, 0 20, 0 0),(2 2, 18 2, 18 18, 2 18, 2 2))')
) AS geom
Result:
+----------------------------------------------------------------------------+
|geom |
+----------------------------------------------------------------------------+
|POLYGON((0 0,0 20,20 20,20 0,0 0),(2 2,18 2,18 18,2 18,2 2)) |
+----------------------------------------------------------------------------+
ST_Centroid¶
Introduction: Return the centroid point of A
Format: ST_Centroid (A:geometry)
SQL example:
SELECT ST_Centroid(polygondf.countyshape)
FROM polygondf
ST_ClosestPoint¶
Introduction: Returns the 2-dimensional point on geom1 that is closest to geom2. This is the first point of the shortest line between the geometries. If using 3D geometries, the Z coordinates will be ignored. If you have a 3D Geometry, you may prefer to use ST_3DClosestPoint. It will throw an exception indicates illegal argument if one of the params is an empty geometry.
Format: ST_ClosestPoint(g1: Geometry, g2: Geometry)
SQL Example:
SELECT ST_AsText( ST_ClosestPoint(g1, g2)) As ptwkt;
Input: g1: POINT (160 40), g2: LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)
Output: POINT(160 40)
Input: g1: LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190), g2: POINT (160 40)
Output: POINT(125.75342465753425 115.34246575342466)
Input: g1: 'POLYGON ((190 150, 20 10, 160 70, 190 150))', g2: ST_Buffer('POINT(80 160)', 30)
Output: POINT(131.59149149528952 101.89887534906197)
ST_Collect¶
Introduction: Returns MultiGeometry object based on a geometry column.
Format
ST_Collect(*geom: geometry)
Example:
SELECT ST_Collect(
tbl.geom) AS geom
Result:
+---------------------------------------------------------------+
|geom |
+---------------------------------------------------------------+
|MULTIPOINT ((21.427834 52.042576573), (45.342524 56.342354355))|
+---------------------------------------------------------------+
Example:
SELECT ST_Collect(
Array(
ST_GeomFromText('POINT(21.427834 52.042576573)'),
ST_GeomFromText('POINT(45.342524 56.342354355)')
)
) AS geom
Result:
+---------------------------------------------------------------+
|geom |
+---------------------------------------------------------------+
|MULTIPOINT ((21.427834 52.042576573), (45.342524 56.342354355))|
+---------------------------------------------------------------+
ST_CollectionExtract¶
Introduction: Returns a homogeneous multi-geometry from a given geometry collection.
The type numbers are: 1. POINT 2. LINESTRING 3. POLYGON
If the type parameter is omitted a multi-geometry of the highest dimension is returned.
Format: ST_CollectionExtract (A:geometry)
Format: ST_CollectionExtract (A:geometry, type:Int)
Example:
WITH test_data as (
ST_GeomFromText(
'GEOMETRYCOLLECTION(POINT(40 10), POLYGON((0 0, 0 5, 5 5, 5 0, 0 0)))'
) as geom
)
SELECT ST_CollectionExtract(geom) as c1, ST_CollectionExtract(geom, 1) as c2
FROM test_data
Result:
+----------------------------------------------------------------------------+
|c1 |c2 |
+----------------------------------------------------------------------------+
|MULTIPOLYGON(((0 0, 0 5, 5 5, 5 0, 0 0))) |MULTIPOINT(40 10) | |
+----------------------------------------------------------------------------+
ST_ConcaveHull¶
Introduction: Return the Concave Hull of polgyon A, with alpha set to pctConvex[0, 1] in the Delaunay Triangulation method, the concave hull will not contain a hole unless allowHoles is set to true
Format: ST_ConcaveHull (A:geometry, pctConvex:float)
Format: ST_ConcaveHull (A:geometry, pctConvex:float, allowHoles:Boolean)
SQL example:
SELECT ST_ConcaveHull(polygondf.countyshape, pctConvex)`
FROM polygondf
ST_ConvexHull¶
Introduction: Return the Convex Hull of polgyon A
Format: ST_ConvexHull (A:geometry)
SQL example:
SELECT ST_ConvexHull(polygondf.countyshape)
FROM polygondf
ST_CoordDim¶
Introduction: Returns the coordinate dimensions of the geometry. It is an alias of ST_NDims
.
Format: ST_CoordDim(geom: Geometry)
SQL Example with x, y, z coordinate:
SELECT ST_CoordDim(ST_GeomFromText('POINT(1 1 2'))
Output:
3
SQL Example with x, y coordinate:
SELECT ST_CoordDim(ST_GeomFromWKT('POINT(3 7)'))
Output:
2
ST_CrossesDateLine¶
Introduction: This function determines if a given geometry crosses the International Date Line. It operates by checking if the difference in longitude between any pair of consecutive points in the geometry exceeds 180 degrees. If such a difference is found, it is assumed that the geometry crosses the Date Line. It returns true if the geometry crosses the Date Line, and false otherwise.
Note
The function assumes that the provided geometry is in lon/lat coordinate reference system where longitude values range from -180 to 180 degrees.
Note
For multi-geometries (e.g., MultiPolygon, MultiLineString), this function will return true if any one of the geometries within the multi-geometry crosses the International Date Line.
Format: ST_CrossesDateLine(geometry: Geometry)
Since: v1.6.0
SQL Example:
SELECT ST_CrossesDateLine(ST_GeomFromWKT('LINESTRING(170 30, -170 30)'))
Output:
true
Warning
For geometries that span more than 180 degrees in longitude without actually crossing the Date Line, this function may still return true, indicating a crossing.
ST_Degrees¶
Introduction: Convert an angle in radian to degrees.
Format: ST_Degrees(angleInRadian)
SQL Example:
SELECT ST_Degrees(0.19739555984988044)
Output:
11.309932474020195
ST_Difference¶
Introduction: Return the difference between geometry A and B (return part of geometry A that does not intersect geometry B)
Format: ST_Difference (A:geometry, B:geometry)
Example:
SELECT ST_Difference(ST_GeomFromWKT('POLYGON ((-3 -3, 3 -3, 3 3, -3 3, -3 -3))'), ST_GeomFromWKT('POLYGON ((0 -4, 4 -4, 4 4, 0 4, 0 -4))'))
Result:
POLYGON ((0 -3, -3 -3, -3 3, 0 3, 0 -3))
ST_Dimension¶
Introduction: Return the topological dimension of this Geometry object, which must be less than or equal to the coordinate dimension. OGC SPEC s2.1.1.1 - returns 0 for POINT, 1 for LINESTRING, 2 for POLYGON, and the largest dimension of the components of a GEOMETRYCOLLECTION. If the dimension is unknown (e.g. for an empty GEOMETRYCOLLECTION) 0 is returned.
Format: ST_Dimension (A: Geometry) | ST_Dimension (C: Geometrycollection)
SQL Example:
SELECT ST_Dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0))');
Output:
1
ST_Distance¶
Introduction: Return the Euclidean distance between A and B
Format: ST_Distance (A:geometry, B:geometry)
SQL example:
SELECT ST_Distance(polygondf.countyshape, polygondf.countyshape)
FROM polygondf
ST_DistanceSphere¶
Introduction: Return the haversine / great-circle distance of A using a given earth radius (default radius: 6371008.0). Unit is meter. Compared to ST_Distance
+ ST_Transform
, it works better for datasets that cover large regions such as continents or the entire planet. It is equivalent to PostGIS ST_Distance(geography, use_spheroid=false)
and ST_DistanceSphere
function and produces nearly identical results. It provides faster but less accurate result compared to ST_DistanceSpheroid
.
Geometry must be in EPSG:4326 (WGS84) projection and must be in lat/lon order. You can use ST_FlipCoordinates to swap lat and lon. For non-point data, we first take the centroids of both geometries and then compute the distance.
Format: ST_DistanceSphere (A:geometry)
SQL example 1:
SELECT ST_DistanceSphere(ST_GeomFromWKT('POINT (51.3168 -0.56)'), ST_GeomFromWKT('POINT (55.9533 -3.1883)'))
Output: 543796.9506134904
SQL example 2:
SELECT ST_DistanceSphere(ST_GeomFromWKT('POINT (51.3168 -0.56)'), ST_GeomFromWKT('POINT (55.9533 -3.1883)'), 6378137.0)
Output: 544405.4459192449
ST_DistanceSpheroid¶
Introduction: Return the geodesic distance of A using WGS84 spheroid. Unit is meter. Compared to ST_Distance
+ ST_Transform
, it works better for datasets that cover large regions such as continents or the entire planet. It is equivalent to PostGIS ST_Distance(geography, use_spheroid=true)
and ST_DistanceSpheroid
function and produces nearly identical results. It provides slower but more accurate result compared to ST_DistanceSphere
.
Geometry must be in EPSG:4326 (WGS84) projection and must be in lat/lon order. You can use ST_FlipCoordinates to swap lat and lon. For non-point data, we first take the centroids of both geometries and then compute the distance.
Format: ST_DistanceSpheroid (A:geometry)
SQL example:
SELECT ST_DistanceSpheroid(ST_GeomFromWKT('POINT (51.3168 -0.56)'), ST_GeomFromWKT('POINT (55.9533 -3.1883)'))
Output: 544430.9411996207
ST_Dump¶
Introduction: This is an aggregate function that takes a column of of geometries as input, and returns a single GeometryCollection of all these geometries.
Format: ST_Dump(geom: geometry)
SQL example:
SELECT ST_Dump(tbl.geom)
Output: GeometryCollection ( (10 40), (40 30), (20 20), (30 10) )
ST_DumpPoints¶
Introduction: Returns a MultiPoint geometry which consists of individual points that compose the input line string.
Format: ST_DumpPoints(geom: geometry)
SQL example:
SELECT ST_DumpPoints(ST_GeomFromText('LINESTRING (0 0, 1 1, 1 0)'))
Output: MultiPoint ((0 0), (0 1), (1 1), (1 0), (0 0))
ST_EndPoint¶
Introduction: Returns last point of given linestring.
Format: ST_EndPoint(geom: geometry)
SQL example:
SELECT ST_EndPoint(ST_GeomFromText('LINESTRING(100 150,50 60, 70 80, 160 170)'))
Output: POINT(160 170)
ST_Envelope¶
Introduction: Return the envelop boundary of A
Format: ST_Envelope (A:geometry)
SQL example:
SELECT ST_Envelope(polygondf.countyshape)
FROM polygondf
ST_ExteriorRing¶
Introduction: Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the geometry is not a polygon.
Format: ST_ExteriorRing(geom: geometry)
SQL example:
SELECT ST_ExteriorRing(ST_GeomFromText('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))'))
Output: LINESTRING (0 0, 1 1, 1 2, 1 1, 0 0)
ST_FlipCoordinates¶
Introduction: Returns a version of the given geometry with X and Y axis flipped.
Format: ST_FlipCoordinates(A:geometry)
SQL example:
SELECT ST_FlipCoordinates(df.geometry)
FROM df
Input: POINT (1 2)
Output: POINT (2 1)
ST_Force_2D¶
Introduction: Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y coordinates
Format: ST_Force_2D (A:geometry)
Example:
SELECT ST_AsText(
ST_Force_2D(ST_GeomFromText('POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))'))
) AS geom
Result:
+---------------------------------------------------------------+
|geom |
+---------------------------------------------------------------+
|POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1)) |
+---------------------------------------------------------------+
ST_Force3D¶
Introduction: Forces the geometry into a 3-dimensional model so that all output representations will have X, Y and Z coordinates. An optionally given zValue is tacked onto the geometry if the geometry is 2-dimensional. Default value of zValue is 0.0 If the given geometry is 3-dimensional, no change is performed on it. If the given geometry is empty, no change is performed on it.
Note
Example output is after calling ST_AsText() on returned geometry, which adds Z for in the WKT for 3D geometries
Format: ST_Force3D(geometry, zValue)
SQL Example:
SELECT ST_Force3D(geometry) AS geom
Input: LINESTRING(0 1, 1 2, 2 1)
Output: LINESTRING Z(0 1 0, 1 2 0, 2 1 0)
Input: POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))
Output: POLYGON Z((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))
SELECT ST_Force3D(geometry, 2.3) AS geom
Input: LINESTRING(0 1, 1 2, 2 1)
Output: LINESTRING Z(0 1 2.3, 1 2 2.3, 2 1 2.3)
Input: POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))
Output: POLYGON Z((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))
Input: LINESTRING EMPTY
Output: LINESTRING EMPTY
ST_ForcePolygonCCW¶
Introduction: For (Multi)Polygon geometries, this function sets the exterior ring orientation to counter-clockwise and interior rings to clockwise orientation. Non-polygonal geometries are returned unchanged.
Format: ST_ForcePolygonCCW(geom: Geometry)
SQL Example:
SELECT ST_AsText(ST_ForcePolygonCCW(ST_GeomFromText('POLYGON ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20))')))
Output:
POLYGON ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35), (30 20, 20 15, 20 25, 30 20))
ST_ForcePolygonCW¶
Introduction: For (Multi)Polygon geometries, this function sets the exterior ring orientation to clockwise and interior rings to counter-clockwise orientation. Non-polygonal geometries are returned unchanged.
Format: ST_ForcePolygonCW(geom: Geometry)
SQL Example:
SELECT ST_AsText(ST_ForcePolygonCW(ST_GeomFromText('POLYGON ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35),(30 20, 20 15, 20 25, 30 20))')))
Output:
POLYGON ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20))
ST_FrechetDistance¶
Introduction: Computes and returns discrete Frechet Distance between the given two geometries, based on Computing Discrete Frechet Distance
If any of the geometries is empty, returns 0.0
Format: ST_FrechetDistance(g1: Geometry, g2: Geometry)
SQL Example:
SELECT ST_FrechetDistance(ST_GeomFromWKT('POINT (0 1)'), ST_GeomFromWKT('LINESTRING (0 0, 1 0, 2 0, 3 0, 4 0, 5 0)'))
Output:
5.0990195135927845
ST_GeoHash¶
Introduction: Returns GeoHash of the geometry with given precision
Format: ST_GeoHash(geom: geometry, precision: int)
Example:
Query:
SELECT ST_GeoHash(ST_GeomFromText('POINT(21.427834 52.042576573)'), 5) AS geohash
Result:
+-----------------------------+
|geohash |
+-----------------------------+
|u3r0p |
+-----------------------------+
ST_GeometricMedian¶
Introduction: Computes the approximate geometric median of a MultiPoint geometry using the Weiszfeld algorithm. The geometric median provides a centrality measure that is less sensitive to outlier points than the centroid.
The algorithm will iterate until the distance change between successive iterations is less than the supplied tolerance
parameter. If this condition has not been met after maxIter
iterations, the function will produce an error and exit, unless failIfNotConverged
is set to false
.
If a tolerance
value is not provided, a default tolerance
value is 1e-6
.
Format: ST_GeometricMedian(geom: geometry, tolerance: float, maxIter: integer, failIfNotConverged: boolean)
Format: ST_GeometricMedian(geom: geometry, tolerance: float, maxIter: integer)
Format: ST_GeometricMedian(geom: geometry, tolerance: float)
Format: ST_GeometricMedian(geom: geometry)
Default parameters: tolerance: 1e-6, maxIter: 1000, failIfNotConverged: false
Example:
SELECT ST_GeometricMedian(ST_GeomFromWKT('MULTIPOINT((0 0), (1 1), (2 2), (200 200))'))
Output:
POINT (1.9761550281255005 1.9761550281255005)
ST_GeometryN¶
Introduction: Return the 0-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON. Otherwise, return null
Format: ST_GeometryN(geom: geometry, n: Int)
SQL example:
SELECT ST_GeometryN(ST_GeomFromText('MULTIPOINT((1 2), (3 4), (5 6), (8 9))'), 1)
Output: POINT (3 4)
ST_GeometryType¶
Introduction: Returns the type of the geometry as a string. EG: 'ST_Linestring', 'ST_Polygon' etc.
Format: ST_GeometryType (A:geometry)
SQL example:
SELECT ST_GeometryType(polygondf.countyshape)
FROM polygondf
ST_HausdorffDistance¶
Introduction: Returns a discretized (and hence approximate) Hausdorff distance between the given 2 geometries. Optionally, a densityFraction parameter can be specified, which gives more accurate results by densifying segments before computing hausdorff distance between them. Each segment is broken down into equal-length subsegments whose ratio with segment length is closest to the given density fraction.
Hence, the lower the densityFrac value, the more accurate is the computed hausdorff distance, and the more time it takes to compute it.
If any of the geometry is empty, 0.0 is returned.
Note
Accepted range of densityFrac is (0.0, 1.0], if any other value is provided, ST_HausdorffDistance throws an IllegalArgumentException
Note
Even though the function accepts 3D geometry, the z ordinate is ignored and the computed hausdorff distance is equivalent to the geometries not having the z ordinate.
Format: ST_HausdorffDistance(g1: Geometry, g2: Geometry, densityFrac: Double)
SQL Example:
SELECT ST_HausdorffDistance(ST_GeomFromWKT('POINT (0.0 1.0)'), ST_GeomFromWKT('LINESTRING (0 0, 1 0, 2 0, 3 0, 4 0, 5 0)'), 0.1)
Output:
5.0990195135927845
SQL Example:
SELECT ST_HausdorffDistance(ST_GeomFromText('POLYGON Z((1 0 1, 1 1 2, 2 1 5, 2 0 1, 1 0 1))'), ST_GeomFromText('POLYGON Z((4 0 4, 6 1 4, 6 4 9, 6 1 3, 4 0 4))'))
Output:
5.0
ST_InteriorRingN¶
Introduction: Returns the Nth interior linestring ring of the polygon geometry. Returns NULL if the geometry is not a polygon or the given N is out of range
Format: ST_InteriorRingN(geom: geometry, n: Int)
SQL example:
SELECT ST_InteriorRingN(ST_GeomFromText('POLYGON((0 0, 0 5, 5 5, 5 0, 0 0), (1 1, 2 1, 2 2, 1 2, 1 1), (1 3, 2 3, 2 4, 1 4, 1 3), (3 3, 4 3, 4 4, 3 4, 3 3))'), 0)
Output: LINESTRING (1 1, 2 1, 2 2, 1 2, 1 1)
ST_Intersection¶
Introduction: Return the intersection geometry of A and B
Format: ST_Intersection (A:geometry, B:geometry)
SQL example:
SELECT ST_Intersection(polygondf.countyshape, polygondf.countyshape)
FROM polygondf
ST_IsClosed¶
Introduction: RETURNS true if the LINESTRING start and end point are the same.
Format: ST_IsClosed(geom: geometry)
SQL example:
SELECT ST_IsClosed(ST_GeomFromText('LINESTRING(0 0, 1 1, 1 0)'))
Output: false
ST_IsCollection¶
Introduction: Returns TRUE
if the geometry type of the input is a geometry collection type.
Collection types are the following:
- GEOMETRYCOLLECTION
- MULTI{POINT, POLYGON, LINESTRING}
Format: ST_IsCollection(geom: Geometry)
SQL Example:
SELECT ST_IsCollection(ST_GeomFromText('MULTIPOINT(0 0), (6 6)'))
Output:
true
SQL Example:
SELECT ST_IsCollection(ST_GeomFromText('POINT(5 5)'))
Output:
false
ST_IsEmpty¶
Introduction: Test if a geometry is empty geometry
Format: ST_IsEmpty (A:geometry)
SQL example:
SELECT ST_IsEmpty(polygondf.countyshape)
FROM polygondf
ST_IsPolygonCCW¶
Introduction: Returns true if all polygonal components in the input geometry have their exterior rings oriented counter-clockwise and interior rings oriented clockwise.
Format: ST_IsPolygonCCW(geom: Geometry)
SQL Example:
SELECT ST_IsPolygonCCW(ST_GeomFromWKT('POLYGON ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35), (30 20, 20 15, 20 25, 30 20))'))
Output:
true
ST_IsPolygonCW¶
Introduction: Returns true if all polygonal components in the input geometry have their exterior rings oriented counter-clockwise and interior rings oriented clockwise.
Format: ST_IsPolygonCW(geom: Geometry)
SQL Example:
SELECT ST_IsPolygonCW(ST_GeomFromWKT('POLYGON ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20))'))
Output:
true
ST_IsRing¶
Introduction: RETURN true if LINESTRING is ST_IsClosed and ST_IsSimple.
Format: ST_IsRing(geom: geometry)
SQL example:
SELECT ST_IsRing(ST_GeomFromText('LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)'))
Output: true
ST_IsSimple¶
Introduction: Test if geometry's only self-intersections are at boundary points.
Format: ST_IsSimple (A:geometry)
SQL example:
SELECT ST_IsSimple(polygondf.countyshape)
FROM polygondf
ST_IsValid¶
Introduction: Test if a geometry is well formed. The function can be invoked with just the geometry or with an additional flag (from v1.5.1
). The flag alters the validity checking behavior. The flags parameter is a bitfield with the following options:
- 0 (default): Use usual OGC SFS (Simple Features Specification) validity semantics.
- 1: "ESRI flag", Accepts certain self-touching rings as valid, which are considered invalid under OGC standards.
Formats:
ST_IsValid (A: Geometry)
ST_IsValid (A: Geometry, flag: Integer)
SQL Example:
SELECT ST_IsValid(ST_GeomFromWKT('POLYGON((0 0, 10 0, 10 10, 0 10, 0 0), (15 15, 15 20, 20 20, 20 15, 15 15))'))
Output:
false
ST_IsValidReason¶
Introduction: Returns text stating if the geometry is valid. If not, it provides a reason why it is invalid. The function can be invoked with just the geometry or with an additional flag. The flag alters the validity checking behavior. The flags parameter is a bitfield with the following options:
- 0 (default): Use usual OGC SFS (Simple Features Specification) validity semantics.
- 1: "ESRI flag", Accepts certain self-touching rings as valid, which are considered invalid under OGC standards.
Formats:
ST_IsValidReason (A: Geometry)
ST_IsValidReason (A: Geometry, flag: Integer)
SQL Example for valid geometry:
SELECT ST_IsValidReason(ST_GeomFromWKT('POLYGON ((100 100, 100 300, 300 300, 300 100, 100 100))')) as validity_info
Output:
Valid Geometry
SQL Example for invalid geometries:
SELECT gid, ST_IsValidReason(geom) as validity_info
FROM Geometry_table
WHERE ST_IsValid(geom) = false
ORDER BY gid
Output:
gid | validity_info
-----+----------------------------------------------------
5330 | Self-intersection at or near point (32.0, 5.0, NaN)
5340 | Self-intersection at or near point (42.0, 5.0, NaN)
5350 | Self-intersection at or near point (52.0, 5.0, NaN)
ST_Length¶
Introduction: Return the perimeter of A
Format: ST_Length (A:geometry)
SQL example:
SELECT ST_Length(polygondf.countyshape)
FROM polygondf
ST_LengthSpheroid¶
Introduction: Return the geodesic perimeter of A using WGS84 spheroid. Unit is meter. Works better for large geometries (country level) compared to ST_Length
+ ST_Transform
. It is equivalent to PostGIS ST_Length(geography, use_spheroid=true)
and ST_LengthSpheroid
function and produces nearly identical results.
Geometry must be in EPSG:4326 (WGS84) projection and must be in lat/lon order. You can use ST_FlipCoordinates to swap lat and lon.
Format: ST_LengthSpheroid (A:geometry)
SQL example:
SELECT ST_LengthSpheroid(ST_GeomFromWKT('Polygon ((0 0, 0 90, 0 0))'))
Output: 20037508.342789244
ST_LineFromMultiPoint¶
Introduction: Creates a LineString from a MultiPoint geometry.
Format: ST_LineFromMultiPoint (A:geometry)
Example:
SELECT ST_AsText(
ST_LineFromMultiPoint(ST_GeomFromText('MULTIPOINT((10 40), (40 30), (20 20), (30 10))'))
) AS geom
Result:
+---------------------------------------------------------------+
|geom |
+---------------------------------------------------------------+
|LINESTRING (10 40, 40 30, 20 20, 30 10) |
+---------------------------------------------------------------+
ST_LineInterpolatePoint¶
Introduction: Returns a point interpolated along a line. First argument must be a LINESTRING. Second argument is a Double between 0 and 1 representing fraction of total linestring length the point has to be located.
Format: ST_LineInterpolatePoint (geom: geometry, fraction: Double)
SQL example:
SELECT ST_LineInterpolatePoint(ST_GeomFromWKT('LINESTRING(25 50, 100 125, 150 190)'), 0.2) as Interpolated
Output:
+-----------------------------------------+
|Interpolated |
+-----------------------------------------+
|POINT (51.5974135047432 76.5974135047432)|
+-----------------------------------------+
ST_LineLocatePoint¶
Introduction: Returns a double between 0 and 1, representing the location of the closest point on the LineString as a fraction of its total length. The first argument must be a LINESTRING, and the second argument is a POINT geometry.
Format: ST_LineLocatePoint(linestring: Geometry, point: Geometry)
SQL Example:
SELECT ST_LineLocatePoint(ST_GeomFromWKT('LINESTRING(0 0, 1 1, 2 2)'), ST_GeomFromWKT('POINT(0 2)'))
Output:
0.5
ST_LineMerge¶
Introduction: Returns a LineString formed by sewing together the constituent line work of a MULTILINESTRING.
Note
Only works for MULTILINESTRING. Using other geometry will return a GEOMETRYCOLLECTION EMPTY. If the MultiLineString can't be merged, the original MULTILINESTRING is returned.
Format: ST_LineMerge (A:geometry)
SELECT ST_LineMerge(geometry)
FROM df
ST_LineSubstring¶
Introduction: Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and third arguments are Double values between 0 and 1. This only works with LINESTRINGs.
Format: ST_LineSubstring (geom: geometry, startfraction: Double, endfraction: Double)
SQL example:
SELECT ST_LineSubstring(ST_GeomFromWKT('LINESTRING(25 50, 100 125, 150 190)'), 0.333, 0.666) as Substring
Output:
+------------------------------------------------------------------------------------------------+
|Substring |
+------------------------------------------------------------------------------------------------+
|LINESTRING (69.28469348539744 94.28469348539744, 100 125, 111.70035626068274 140.21046313888758)|
+------------------------------------------------------------------------------------------------+
ST_MakeLine¶
Introduction: Creates a LineString containing the points of Point, MultiPoint, or LineString geometries. Other geometry types cause an error.
Format:
ST_MakeLine(geom1: Geometry, geom2: Geometry)
ST_MakeLine(geoms: Geometry)
This Geometry must be a GeometryCollection of the geometry types listed above.
SQL Example:
SELECT ST_AsText( ST_MakeLine(ST_Point(1,2), ST_Point(3,4)) );
Output:
LINESTRING(1 2,3 4)
SQL Example:
SELECT ST_AsText( ST_MakeLine( 'LINESTRING(0 0, 1 1)', 'LINESTRING(2 2, 3 3)' ) );
Output:
LINESTRING(0 0,1 1,2 2,3 3)
ST_MakePolygon¶
Introduction: Function to convert closed linestring to polygon including holes. The holes must be a MultiLinestring.
Format: ST_MakePolygon(geom: geometry, holes: <geometry>)
Example:
Query:
SELECT
ST_MakePolygon(
ST_GeomFromText('LINESTRING(7 -1, 7 6, 9 6, 9 1, 7 -1)'),
ST_GeomFromText('MultiLINESTRING((6 2, 8 2, 8 1, 6 1, 6 2))')
) AS polygon
Result:
+----------------------------------------------------------------+
|polygon |
+----------------------------------------------------------------+
|POLYGON ((7 -1, 7 6, 9 6, 9 1, 7 -1), (6 2, 8 2, 8 1, 6 1, 6 2))|
+----------------------------------------------------------------+
ST_MakeValid¶
Introduction: Given an invalid geometry, create a valid representation of the geometry.
Collapsed geometries are either converted to empty (keepCollaped=true) or a valid geometry of lower dimension (keepCollapsed=false). Default is keepCollapsed=false.
Format: ST_MakeValid (A:geometry)
Format: ST_MakeValid (A:geometry, keepCollapsed:Boolean)
SQL example:
WITH linestring AS (
SELECT ST_GeomFromWKT('LINESTRING(1 1, 1 1)') AS geom
) SELECT ST_MakeValid(geom), ST_MakeValid(geom, true) FROM linestring
Result:
+------------------+------------------------+
|st_makevalid(geom)|st_makevalid(geom, true)|
+------------------+------------------------+
| LINESTRING EMPTY| POINT (1 1)|
+------------------+------------------------+
Note
In Sedona up to and including version 1.2 the behaviour of ST_MakeValid was different. Be sure to check you code when upgrading. The previous implementation only worked for (multi)polygons and had a different interpretation of the second, boolean, argument. It would also sometimes return multiple geometries for a single geometry input.
ST_MinimumBoundingCircle¶
Introduction: Returns the smallest circle polygon that contains a geometry.
Format: ST_MinimumBoundingCircle(geom: geometry, [Optional] quadrantSegments:int)
SQL example:
SELECT ST_MinimumBoundingCircle(ST_GeomFromText('POLYGON((1 1,0 0, -1 1, 1 1))'))
ST_MinimumBoundingRadius¶
Introduction: Returns two columns containing the center point and radius of the smallest circle that contains a geometry.
Format: ST_MinimumBoundingRadius(geom: geometry)
SQL example:
SELECT ST_MinimumBoundingRadius(ST_GeomFromText('POLYGON((1 1,0 0, -1 1, 1 1))'))
ST_Multi¶
Introduction: Returns a MultiGeometry object based on the geometry input. ST_Multi is basically an alias for ST_Collect with one geometry.
Format
ST_Multi(geom: geometry)
Example:
SELECT ST_Multi(
ST_GeomFromText('POINT(1 1)')
) AS geom
Result:
+---------------------------------------------------------------+
|geom |
+---------------------------------------------------------------+
|MULTIPOINT (1 1) |
+---------------------------------------------------------------+
ST_NDims¶
Introduction: Returns the coordinate dimension of the geometry.
Format: ST_NDims(geom: geometry)
SQL example with z co-rodinate:
SELECT ST_NDims(ST_GeomFromEWKT('POINT(1 1 2)'))
Output: 3
SQL example with x,y coordinate:
SELECT ST_NDims(ST_GeomFromText('POINT(1 1)'))
Output: 2
ST_Normalize¶
Introduction: Returns the input geometry in its normalized form.
Format
ST_Normalize(geom: geometry)
Example:
SELECT ST_AsEWKT(ST_Normalize(ST_GeomFromWKT('POLYGON((0 1, 1 1, 1 0, 0 0, 0 1))'))) AS geom
Result:
+-----------------------------------+
|geom |
+-----------------------------------+
|POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))|
+-----------------------------------+
ST_NPoints¶
Introduction: Return points of the geometry
Format: ST_NPoints (A:geometry)
SELECT ST_NPoints(polygondf.countyshape)
FROM polygondf
ST_NRings¶
Introduction: Returns the number of rings in a Polygon or MultiPolygon. Contrary to ST_NumInteriorRings, this function also takes into account the number of exterior rings.
This function returns 0 for an empty Polygon or MultiPolygon. If the geometry is not a Polygon or MultiPolygon, an IllegalArgument Exception is thrown.
Format: ST_NRings(geom: geometry)
Examples:
Input: POLYGON ((1 0, 1 1, 2 1, 2 0, 1 0))
Output: 1
Input: 'MULTIPOLYGON (((1 0, 1 6, 6 6, 6 0, 1 0), (2 1, 2 2, 3 2, 3 1, 2 1)), ((10 0, 10 6, 16 6, 16 0, 10 0), (12 1, 12 2, 13 2, 13 1, 12 1)))'
Output: 4
Input: 'POLYGON EMPTY'
Output: 0
Input: 'LINESTRING (1 0, 1 1, 2 1)'
Output: Unsupported geometry type: LineString, only Polygon or MultiPolygon geometries are supported.
ST_NumGeometries¶
Introduction: Returns the number of Geometries. If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries, for single geometries will return 1.
Format: ST_NumGeometries (A:geometry)
SELECT ST_NumGeometries(df.geometry)
FROM df
ST_NumInteriorRings¶
Introduction: RETURNS number of interior rings of polygon geometries.
Format: ST_NumInteriorRings(geom: geometry)
SQL example:
SELECT ST_NumInteriorRings(ST_GeomFromText('POLYGON ((0 0, 0 5, 5 5, 5 0, 0 0), (1 1, 2 1, 2 2, 1 2, 1 1))'))
Output: 1
ST_NumPoints¶
Introduction: Returns number of points in a LineString
Format: ST_NumPoints(geom: geometry)
Note
If any other geometry is provided as an argument, an IllegalArgumentException is thrown.
SQL Example:
SELECT ST_NumPoints(ST_GeomFromWKT('MULTIPOINT ((0 0), (1 1), (0 1), (2 2))'))
Output:
IllegalArgumentException: Unsupported geometry type: MultiPoint, only LineString geometry is supported.
SQL Example:
SELECT ST_NumPoints(ST_GeomFromText('LINESTRING(0 1, 1 0, 2 0)'))
Output: 3
ST_PointN¶
Introduction: Return the Nth point in a single linestring or circular linestring in the geometry. Negative values are counted backwards from the end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the geometry.
Format: ST_PointN(geom: geometry, n: integer)
SQL example:
SELECT ST_PointN(ST_GeomFromText('LINESTRING(0 0, 1 2, 2 4, 3 6)'), 2) AS geom
Result:
+---------------------------------------------------------------+
|geom |
+---------------------------------------------------------------+
|POINT (1 2) |
+---------------------------------------------------------------+
ST_PointOnSurface¶
Introduction: Returns a POINT guaranteed to lie on the surface.
Format: ST_PointOnSurface(A:geometry)
Examples:
SELECT ST_AsText(ST_PointOnSurface(ST_GeomFromText('POINT(0 5)')));
st_astext
------------
POINT(0 5)
SELECT ST_AsText(ST_PointOnSurface(ST_GeomFromText('LINESTRING(0 5, 0 10)')));
st_astext
------------
POINT(0 5)
SELECT ST_AsText(ST_PointOnSurface(ST_GeomFromText('POLYGON((0 0, 0 5, 5 5, 5 0, 0 0))')));
st_astext
----------------
POINT(2.5 2.5)
SELECT ST_AsText(ST_PointOnSurface(ST_GeomFromText('LINESTRING(0 5 1, 0 0 1, 0 10 2)')));
st_astext
----------------
POINT Z(0 0 1)
ST_Polygon¶
Introduction: Function to create a polygon built from the given LineString and sets the spatial reference system from the srid
Format: ST_Polygon(geom: Geometry, srid: Integer)
SQL Example:
SELECT ST_AsText( ST_Polygon(ST_GeomFromEWKT('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29 1)'), 4326) );
Output:
POLYGON((75 29 1, 77 29 2, 77 29 3, 75 29 1))
ST_ReducePrecision¶
Introduction: Reduce the decimals places in the coordinates of the geometry to the given number of decimal places. The last decimal place will be rounded. This function was called ST_PrecisionReduce in versions prior to v1.5.0.
Format: ST_ReducePrecision (A: Geometry, B: Integer)
SQL Example:
SELECT ST_ReducePrecision(ST_GeomFromWKT('Point(0.1234567890123456789 0.1234567890123456789)')
, 9)
Output:
POINT (0.123456789 0.123456789)
ST_RemovePoint¶
Introduction: RETURN Line with removed point at given index, position can be omitted and then last one will be removed.
Format: ST_RemovePoint(geom: geometry, position: integer)
Format: ST_RemovePoint(geom: geometry)
SQL example:
SELECT ST_RemovePoint(ST_GeomFromText('LINESTRING(0 0, 1 1, 1 0)'), 1)
Output: LINESTRING(0 0, 1 0)
ST_Reverse¶
Introduction: Return the geometry with vertex order reversed
Format: ST_Reverse (A:geometry)
Example:
SELECT ST_AsText(
ST_Reverse(ST_GeomFromText('LINESTRING(0 0, 1 2, 2 4, 3 6)'))
) AS geom
Result:
+---------------------------------------------------------------+
|geom |
+---------------------------------------------------------------+
|LINESTRING (3 6, 2 4, 1 2, 0 0) |
+---------------------------------------------------------------+
ST_S2CellIDs¶
Introduction: Cover the geometry with Google S2 Cells, return the corresponding cell IDs with the given level. The level indicates the size of cells. With a bigger level, the cells will be smaller, the coverage will be more accurate, but the result size will be exponentially increasing.
Format: ST_S2CellIDs(geom: geometry, level: Int)
SQL example:
SELECT ST_S2CellIDs(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'), 6)
Output:
+------------------------------------------------------------------------------------------------------------------------------+
|st_s2cellids(st_geomfromtext(LINESTRING(1 3 4, 5 6 7), 0), 6) |
+------------------------------------------------------------------------------------------------------------------------------+
|[1159395429071192064, 1159958379024613376, 1160521328978034688, 1161084278931456000, 1170091478186196992, 1170654428139618304]|
+------------------------------------------------------------------------------------------------------------------------------+
ST_SetPoint¶
Introduction: Replace Nth point of linestring with given point. Index is 0-based. Negative index are counted backwards, e.g., -1 is last point.
Format: ST_SetPoint (linestring: geometry, index: integer, point: geometry)
Example:
SELECT ST_SetPoint(ST_GeomFromText('LINESTRING (0 0, 0 1, 1 1)'), 2, ST_GeomFromText('POINT (1 0)')) AS geom
Result:
+--------------------------+
|geom |
+--------------------------+
|LINESTRING (0 0, 0 1, 1 0)|
+--------------------------+
ST_SetSRID¶
Introduction: Sets the spatial reference system identifier (SRID) of the geometry.
Format: ST_SetSRID (A:geometry, srid: Integer)
SQL example:
SELECT ST_SetSRID(polygondf.countyshape, 3021)
FROM polygondf
ST_ShiftLongitude¶
Introduction: Modifies longitude coordinates in geometries, shifting values between -180..0 degrees to 180..360 degrees and vice versa. This is useful for normalizing data across the International Date Line and standardizing coordinate ranges for visualization and spheroidal calculations.
Note
This function is only applicable to geometries that use lon/lat coordinate systems.
Format: ST_ShiftLongitude (geom: geometry)
Since: v1.6.0
SQL example:
SELECT ST_ShiftLongitude(ST_GeomFromText('LINESTRING(177 10, 179 10, -179 10, -177 10)'))
Output:
LINESTRING(177 10, 179 10, 181 10, 183 10)
ST_SimplifyPreserveTopology¶
Introduction: Simplifies a geometry and ensures that the result is a valid geometry having the same dimension and number of components as the input, and with the components having the same topological relationship.
Format: ST_SimplifyPreserveTopology (A:geometry, distanceTolerance: Double)
SELECT ST_SimplifyPreserveTopology(polygondf.countyshape, 10.0)
FROM polygondf
ST_Snap¶
Introduction: Snaps the vertices and segments of the input
geometry to reference
geometry within the specified tolerance
distance. The tolerance
parameter controls the maximum snap distance.
If the minimum distance between the geometries exceeds the tolerance
, the input
geometry is returned unmodified. Adjusting the tolerance
value allows tuning which vertices should snap to the reference
and which remain untouched.
Format: ST_Snap(input: Geometry, reference: Geometry, tolerance: double)
Input geometry:
SQL Example:
SELECT ST_Snap(
ST_GeomFromWKT('POLYGON ((236877.58 -6.61, 236878.29 -8.35, 236879.98 -8.33, 236879.72 -7.63, 236880.35 -6.62, 236877.58 -6.61), (236878.45 -7.01, 236878.43 -7.52, 236879.29 -7.50, 236878.63 -7.22, 236878.76 -6.89, 236878.45 -7.01))') as poly,
ST_GeomFromWKT('LINESTRING (236880.53 -8.22, 236881.15 -7.68, 236880.69 -6.81)') as line,
ST_Distance(poly, line) * 1.01
)
Output:
POLYGON ((236877.58 -6.61, 236878.29 -8.35, 236879.98 -8.33, 236879.72 -7.63, 236880.69 -6.81, 236877.58 -6.61), (236878.45 -7.01, 236878.43 -7.52, 236879.29 -7.5, 236878.63 -7.22, 236878.76 -6.89, 236878.45 -7.01))
ST_Split¶
Introduction: Split an input geometry by another geometry (called the blade). Linear (LineString or MultiLineString) geometry can be split by a Point, MultiPoint, LineString, MultiLineString, Polygon, or MultiPolygon. Polygonal (Polygon or MultiPolygon) geometry can be split by a LineString, MultiLineString, Polygon, or MultiPolygon. In either case, when a polygonal blade is used then the boundary of the blade is what is actually split by. ST_Split will always return either a MultiLineString or MultiPolygon even if they only contain a single geometry. Homogeneous GeometryCollections are treated as a multi-geometry of the type it contains. For example, if a GeometryCollection of only Point geometries is passed as a blade it is the same as passing a MultiPoint of the same geometries.
Format: ST_Split (input: geometry, blade: geometry)
SQL Example:
SELECT ST_Split(
ST_GeomFromWKT('LINESTRING (0 0, 1.5 1.5, 2 2)'),
ST_GeomFromWKT('MULTIPOINT (0.5 0.5, 1 1)'))
Output: MULTILINESTRING ((0 0, 0.5 0.5), (0.5 0.5, 1 1), (1 1, 1.5 1.5, 2 2))
ST_SRID¶
Introduction: Return the spatial reference system identifier (SRID) of the geometry.
Format: ST_SRID (A:geometry)
SQL example:
SELECT ST_SRID(polygondf.countyshape)
FROM polygondf
ST_StartPoint¶
Introduction: Returns first point of given linestring.
Format: ST_StartPoint(geom: geometry)
SQL example:
SELECT ST_StartPoint(ST_GeomFromText('LINESTRING(100 150,50 60, 70 80, 160 170)'))
Output: POINT(100 150)
ST_SubDivide¶
Introduction: Returns a multi-geometry divided based of given maximum number of vertices.
Format: ST_SubDivide(geom: geometry, maxVertices: int)
SQL example:
SELECT Sedona.ST_AsText(Sedona.ST_SubDivide(Sedona.ST_GeomFromText('LINESTRING(0 0, 85 85, 100 100, 120 120, 21 21, 10 10, 5 5)'), 5));
Output:
MULTILINESTRING ((0 0, 5 5), (5 5, 10 10), (10 10, 21 21), (21 21, 60 60), (60 60, 85 85), (85 85, 100 100), (100 100, 120 120))
ST_SubDivideExplode¶
Introduction: It works the same as ST_SubDivide but returns new rows with geometries instead of a multi-geometry.
Format: SELECT SEDONA.ST_AsText(GEOM)
FROM table(SEDONA.ST_SubDivideExplode(geom: geometry, maxVertices: int))
Example:
Query:
SELECT Sedona.ST_AsText(GEOM)
FROM table(Sedona.ST_SubDivideExplode(Sedona.ST_GeomFromText('LINESTRING(0 0, 85 85, 100 100, 120 120, 21 21, 10 10, 5 5)'), 5));
Result:
+-----------------------------+
|geom |
+-----------------------------+
|LINESTRING(0 0, 5 5) |
|LINESTRING(5 5, 10 10) |
|LINESTRING(10 10, 21 21) |
|LINESTRING(21 21, 60 60) |
|LINESTRING(60 60, 85 85) |
|LINESTRING(85 85, 100 100) |
|LINESTRING(100 100, 120 120) |
+-----------------------------+
ST_SymDifference¶
Introduction: Return the symmetrical difference between geometry A and B (return parts of geometries which are in either of the sets, but not in their intersection)
Format: ST_SymDifference (A:geometry, B:geometry)
Example:
SELECT ST_SymDifference(ST_GeomFromWKT('POLYGON ((-3 -3, 3 -3, 3 3, -3 3, -3 -3))'), ST_GeomFromWKT('POLYGON ((-2 -3, 4 -3, 4 3, -2 3, -2 -3))'))
Result:
MULTIPOLYGON (((-2 -3, -3 -3, -3 3, -2 3, -2 -3)), ((3 -3, 3 3, 4 3, 4 -3, 3 -3)))
ST_Transform¶
Introduction:
Transform the Spatial Reference System / Coordinate Reference System of A, from SourceCRS to TargetCRS. For SourceCRS and TargetCRS, WKT format is also available.
Note
By default, this function uses lat/lon order. You can use ST_FlipCoordinates to swap X and Y.
Note
If ST_Transform throws an Exception called "Bursa wolf parameters required", you need to disable the error notification in ST_Transform. You can append a boolean value at the end.
Format: ST_Transform (A:geometry, SourceCRS:string, TargetCRS:string ,[Optional] DisableError)
SQL example (simple):
SELECT ST_Transform(polygondf.countyshape, 'epsg:4326','epsg:3857')
FROM polygondf
SQL example (with optional parameters):
SELECT ST_Transform(polygondf.countyshape, 'epsg:4326','epsg:3857', false)
FROM polygondf
Note
The detailed EPSG information can be searched on EPSG.io.
ST_Translate¶
Introduction: Returns the input geometry with its X, Y and Z coordinates (if present in the geometry) translated by deltaX, deltaY and deltaZ (if specified)
If the geometry is 2D, and a deltaZ parameter is specified, no change is done to the Z coordinate of the geometry and the resultant geometry is also 2D.
If the geometry is empty, no change is done to it. If the given geometry contains sub-geometries (GEOMETRY COLLECTION, MULTI POLYGON/LINE/POINT), all underlying geometries are individually translated.
Format: ST_Translate(geometry: geometry, deltaX: deltaX, deltaY: deltaY, deltaZ: deltaZ)
Example:
Input: ST_Translate(GEOMETRYCOLLECTION(MULTIPOLYGON (((1 0, 1 1, 2 1, 2 0, 1 0)), ((1 2, 3 4, 3 5, 1 2))), POINT(1, 1, 1), LINESTRING EMPTY), 2, 2, 3)
Output: GEOMETRYCOLLECTION(MULTIPOLYGON (((3 2, 3 3, 4 3, 4 2, 3 2)), ((3 4, 5 6, 5 7, 3 4))), POINT(3, 3, 4), LINESTRING EMPTY)
Input: ST_Translate(POINT(1, 3, 2), 1, 2)
Output: POINT(2, 5, 2)
ST_Union¶
Introduction: Return the union of geometry A and B
Format: ST_Union (A:geometry, B:geometry)
Example:
SELECT ST_Union(ST_GeomFromWKT('POLYGON ((-3 -3, 3 -3, 3 3, -3 3, -3 -3))'), ST_GeomFromWKT('POLYGON ((1 -2, 5 0, 1 2, 1 -2))'))
Result:
POLYGON ((3 -1, 3 -3, -3 -3, -3 3, 3 3, 3 1, 5 0, 3 -1))
ST_VoronoiPolygons¶
Introduction: Returns a two-dimensional Voronoi diagram from the vertices of the supplied geometry. The result is a GeometryCollection of Polygons that covers an envelope larger than the extent of the input vertices. Returns null if input geometry is null. Returns an empty geometry collection if the input geometry contains only one vertex. Returns an empty geometry collection if the extend_to envelope has zero area.
Format: ST_VoronoiPolygons(g1: Geometry, tolerance: Double, extend_to: Geometry)
Optional parameters:
tolerance
: The distance within which vertices will be considered equivalent. Robustness of the algorithm can be improved by supplying a nonzero tolerance distance. (default = 0.0)
extend_to
: If a geometry is supplied as the "extend_to" parameter, the diagram will be extended to cover the envelope of the "extend_to" geometry, unless that envelope is smaller than the default envelope (default = NULL. By default, we extend the bounding box of the diagram by the max between bounding box's height and bounding box's width).
SQL Example:
SELECT st_astext(ST_VoronoiPolygons(ST_GeomFromText('MULTIPOINT ((0 0), (1 1))')));
Output:
GEOMETRYCOLLECTION(POLYGON((-1 2,2 -1,-1 -1,-1 2)),POLYGON((-1 2,2 2,2 -1,-1 2)))
ST_X¶
Introduction: Returns X Coordinate of given Point null otherwise.
Format: ST_X(pointA: Point)
SQL example:
SELECT ST_X(ST_POINT(0.0 25.0))
Output: 0.0
ST_XMax¶
Introduction: Returns the maximum X coordinate of a geometry
Format: ST_XMax (A:geometry)
Example:
SELECT ST_XMax(df.geometry) AS xmax
FROM df
Input: POLYGON ((-1 -11, 0 10, 1 11, 2 12, -1 -11))
Output: 2
ST_XMin¶
Introduction: Returns the minimum X coordinate of a geometry
Format: ST_XMin (A:geometry)
Example:
SELECT ST_XMin(df.geometry) AS xmin
FROM df
Input: POLYGON ((-1 -11, 0 10, 1 11, 2 12, -1 -11))
Output: -1
ST_Y¶
Introduction: Returns Y Coordinate of given Point, null otherwise.
Format: ST_Y(pointA: Point)
SQL example:
SELECT ST_Y(ST_POINT(0.0 25.0))
Output: 25.0
ST_YMax¶
Introduction: Return the minimum Y coordinate of A
Format: ST_YMax (A:geometry)
SQL example:
SELECT ST_YMax(ST_GeomFromText('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))'))
Output: 2
ST_YMin¶
Introduction: Return the minimum Y coordinate of A
Format: ST_Y_Min (A:geometry)
SQL example:
SELECT ST_YMin(ST_GeomFromText('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))'))
Output : 0
ST_Z¶
Introduction: Returns Z Coordinate of given Point, null otherwise.
Format: ST_Z(pointA: Point)
SQL example:
SELECT ST_Z(ST_POINT(0.0 25.0 11.0))
Output: 11.0
ST_ZMax¶
Introduction: Returns Z maxima of the given geometry or null if there is no Z coordinate.
Format: ST_ZMax(geom: geometry)
SQL example:
SELECT ST_ZMax(ST_GeomFromText('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))'))
Output: 1.0
ST_ZMin¶
Introduction: Returns Z minima of the given geometry or null if there is no Z coordinate.
Format: ST_ZMin(geom: geometry)
SQL example:
SELECT ST_ZMin(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'))
Output: 4.0