Skip to content

Function (Flink)

GeometryType

Introduction: Returns the type of the geometry as a string. Eg: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc. This function also indicates if the geometry is measured, by returning a string of the form 'POINTM'.

Format: GeometryType (A: Geometry)

Since: v1.5.0

Example:

SELECT GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));

Result:

 geometrytype
--------------
 LINESTRING
SELECT GeometryType(ST_GeomFromText('POINTM(0 0 1)'));

Result:

 geometrytype
--------------
 POINTM

ST_3DDistance

Introduction: Return the 3-dimensional minimum cartesian distance between A and B

Format: ST_3DDistance (A: Geometry, B: Geometry)

Since: v1.3.0

Example:

SELECT ST_3DDistance(ST_GeomFromText("POINT Z (0 0 -5)"),
                     ST_GeomFromText("POINT Z(1  1 -6"))

Output:

1.7320508075688772

ST_AddPoint

Introduction: Return Linestring with additional point at the given index, if position is not available the point will be added at the end of line.

Format:

ST_AddPoint(geom: Geometry, point: Geometry, position: Integer)

ST_AddPoint(geom: Geometry, point: Geometry)

Since: v1.3.0

Example:

SELECT ST_AddPoint(ST_GeomFromText("LINESTRING(0 0, 1 1, 1 0)"), ST_GeomFromText("Point(21 52)"), 1)

SELECT ST_AddPoint(ST_GeomFromText("Linestring(0 0, 1 1, 1 0)"), ST_GeomFromText("Point(21 52)"))

Output:

LINESTRING(0 0, 21 52, 1 1, 1 0)
LINESTRING(0 0, 1 1, 1 0, 21 52)

ST_Affine

Introduction: Apply an affine transformation to the given geometry.

ST_Affine has 2 overloaded signatures:

ST_Affine(geometry, a, b, c, d, e, f, g, h, i, xOff, yOff, zOff)

ST_Affine(geometry, a, b, d, e, xOff, yOff)

Based on the invoked function, the following transformation is applied:

x = a * x + b * y + c * z + xOff OR x = a * x + b * y + xOff

y = d * x + e * y + f * z + yOff OR y = d * x + e * y + yOff

z = g * x + f * y + i * z + zOff OR z = g * x + f * y + zOff

If the given geometry is empty, the result is also empty.

Format:

ST_Affine(geometry, a, b, c, d, e, f, g, h, i, xOff, yOff, zOff)

ST_Affine(geometry, a, b, d, e, xOff, yOff)

Since: v1.5.0

Examples:

ST_Affine(geometry, 1, 2, 4, 1, 1, 2, 3, 2, 5, 4, 8, 3)

Input: LINESTRING EMPTY

Output: LINESTRING EMPTY

Input: POLYGON ((1 0 1, 1 1 1, 2 2 2, 1 0 1))

Output: POLYGON Z((9 11 11, 11 12 13, 18 16 23, 9 11 11))

Input: POLYGON ((1 0, 1 1, 2 1, 2 0, 1 0), (1 0.5, 1 0.75, 1.5 0.75, 1.5 0.5, 1 0.5))

Output: POLYGON((5 9, 7 10, 8 11, 6 10, 5 9), (6 9.5, 6.5 9.75, 7 10.25, 6.5 10, 6 9.5))

ST_Affine(geometry, 1, 2, 1, 2, 1, 2)

Input: POLYGON EMPTY

Output: POLYGON EMPTY

Input: GEOMETRYCOLLECTION (MULTIPOLYGON (((1 0, 1 1, 2 1, 2 0, 1 0), (1 0.5, 1 0.75, 1.5 0.75, 1.5 0.5, 1 0.5)), ((5 0, 5 5, 7 5, 7 0, 5 0))), POINT (10 10))

Output: GEOMETRYCOLLECTION (MULTIPOLYGON (((2 3, 4 5, 5 6, 3 4, 2 3), (3 4, 3.5 4.5, 4 5, 3.5 4.5, 3 4)), ((6 7, 16 17, 18 19, 8 9, 6 7))), POINT (31 32))

Input: POLYGON ((1 0 1, 1 1 1, 2 2 2, 1 0 1))

Output: POLYGON Z((2 3 1, 4 5 1, 7 8 2, 2 3 1))

ST_Angle

Introduction: Compute and return the angle between two vectors represented by the provided points or linestrings.

There are three variants possible for ST_Angle:

ST_Angle(point1: Geometry, point2: Geometry, point3: Geometry, point4: Geometry)

Computes the angle formed by vectors represented by point1 - point2 and point3 - point4

ST_Angle(point1: Geometry, point2: Geometry, point3: Geometry)

Computes the angle formed by vectors represented by point2 - point1 and point2 - point3

ST_Angle(line1: Geometry, line2: Geometry)

Computes the angle formed by vectors S1 - E1 and S2 - E2, where S and E denote start and end points respectively

Note

If any other geometry type is provided, ST_Angle throws an IllegalArgumentException. Additionally, if any of the provided geometry is empty, ST_Angle throws an IllegalArgumentException.

Note

If a 3D geometry is provided, ST_Angle computes the angle ignoring the z ordinate, equivalent to calling ST_Angle for corresponding 2D geometries.

Tip

ST_Angle returns the angle in radian between 0 and 2\Pi. To convert the angle to degrees, use ST_Degrees.

Format: ST_Angle(p1, p2, p3, p4) | ST_Angle(p1, p2, p3) | ST_Angle(line1, line2)

Since: v1.5.0

Example:

SELECT ST_Angle(ST_GeomFromWKT('POINT(0 0)'), ST_GeomFromWKT('POINT (1 1)'), ST_GeomFromWKT('POINT(1 0)'), ST_GeomFromWKT('POINT(6 2)'))

Output:

0.4048917862850834

Example:

SELECT ST_Angle(ST_GeomFromWKT('POINT (1 1)'), ST_GeomFromWKT('POINT (0 0)'), ST_GeomFromWKT('POINT(3 2)'))

Output:

0.19739555984988044

Example:

SELECT ST_Angle(ST_GeomFromWKT('LINESTRING (0 0, 1 1)'), ST_GeomFromWKT('LINESTRING (0 0, 3 2)'))

Output:

0.19739555984988044

ST_Area

Introduction: Return the area of A

Format: ST_Area (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_Area(ST_GeomFromText("POLYGON(0 0, 0 10, 10 10, 0 10, 0 0)"))

Output:

10

ST_AreaSpheroid

Introduction: Return the geodesic area of A using WGS84 spheroid. Unit is meter. Works better for large geometries (country level) compared to ST_Area + ST_Transform. It is equivalent to PostGIS ST_Area(geography, use_spheroid=true) function and produces nearly identical results.

Geometry must be in EPSG:4326 (WGS84) projection and must be in lon/lat order. You can use ST_FlipCoordinates to swap lat and lon.

Note

By default, this function uses lon/lat order since v1.5.0. Before, it used lat/lon order.

Format: ST_AreaSpheroid (A: Geometry)

Since: v1.4.1

Example:

SELECT ST_AreaSpheroid(ST_GeomFromWKT('Polygon ((34 35, 28 30, 25 34, 34 35))'))

Output:

201824850811.76245

ST_AsBinary

Introduction: Return the Well-Known Binary representation of a geometry

Format: ST_AsBinary (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_AsBinary(ST_GeomFromWKT('POINT (1 1)'))

Output:

0101000000000000000000f87f000000000000f87f

ST_AsEWKB

Introduction: Return the Extended Well-Known Binary representation of a geometry. EWKB is an extended version of WKB which includes the SRID of the geometry. The format originated in PostGIS but is supported by many GIS tools. If the geometry is lacking SRID a WKB format is produced. It will ignore the M coordinate if present.

Format: ST_AsEWKB (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_AsEWKB(ST_SetSrid(ST_GeomFromWKT('POINT (1 1)'), 3021))

Output:

0101000020cd0b0000000000000000f03f000000000000f03f

ST_AsEWKT

Introduction: Return the Extended Well-Known Text representation of a geometry. EWKT is an extended version of WKT which includes the SRID of the geometry. The format originated in PostGIS but is supported by many GIS tools. If the geometry is lacking SRID a WKT format is produced. See ST_SetSRID It will support M coordinate if present since v1.5.0.

Format: ST_AsEWKT (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_AsEWKT(ST_SetSrid(ST_GeomFromWKT('POLYGON((0 0,0 1,1 1,1 0,0 0))'), 4326))

Output:

SRID=4326;POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))

Example:

SELECT ST_AsEWKT(ST_MakePointM(1.0, 1.0, 1.0))

Output:

POINT M(1 1 1)

Example:

SELECT ST_AsEWKT(ST_MakePoint(1.0, 1.0, 1.0, 1.0))

Output:

POINT ZM(1 1 1 1)

ST_AsGeoJSON

Introduction: Return the GeoJSON string representation of a geometry

Format: ST_AsGeoJSON (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_AsGeoJSON(ST_GeomFromWKT('POLYGON((1 1, 8 1, 8 8, 1 8, 1 1))'))

Output:

{
  "type":"Polygon",
  "coordinates":[
    [[1.0,1.0],
      [8.0,1.0],
      [8.0,8.0],
      [1.0,8.0],
      [1.0,1.0]]
  ]
}

ST_AsGML

Introduction: Return the GML string representation of a geometry

Format: ST_AsGML (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_AsGML(ST_GeomFromWKT('POLYGON((1 1, 8 1, 8 8, 1 8, 1 1))'))

Output:

1.0,1.0 8.0,1.0 8.0,8.0 1.0,8.0 1.0,1.0

ST_AsKML

Introduction: Return the KML string representation of a geometry

Format: ST_AsKML (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_AsKML(ST_GeomFromWKT('POLYGON((1 1, 8 1, 8 8, 1 8, 1 1))'))

Output:

1.0,1.0 8.0,1.0 8.0,8.0 1.0,8.0 1.0,1.0

ST_AsText

Introduction: Return the Well-Known Text string representation of a geometry. It will support M coordinate if present since v1.5.0.

Format: ST_AsText (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_AsText(ST_SetSRID(ST_Point(1.0,1.0), 3021))

Output:

POINT (1 1)

Example:

SELECT ST_AsText(ST_MakePointM(1.0, 1.0, 1.0))

Output:

POINT M(1 1 1)

Example:

SELECT ST_AsText(ST_MakePoint(1.0, 1.0, 1.0, 1.0))

Output:

POINT ZM(1 1 1 1)

ST_Azimuth

Introduction: Returns Azimuth for two given points in radians null otherwise.

Format: ST_Azimuth(pointA: Point, pointB: Point)

Since: v1.3.0

Example:

SELECT ST_Azimuth(ST_POINT(0.0, 25.0), ST_POINT(0.0, 0.0))

Output:

3.141592653589793

ST_BestSRID

Introduction: Returns the estimated most appropriate Spatial Reference Identifier (SRID) for a given geometry, based on its spatial extent and location. It evaluates the geometry's bounding envelope and selects an SRID that optimally represents the geometry on the Earth's surface. The function prioritizes Universal Transverse Mercator (UTM), Lambert Azimuthal Equal Area (LAEA), or falls back to the Mercator projection. The function takes a WGS84 geometry and must be in lon/lat order.

  • For geometries in the Arctic or Antarctic regions, the Lambert Azimuthal Equal Area projection is used.
  • For geometries that fit within a single UTM zone and do not cross the International Date Line (IDL), a corresponding UTM SRID is chosen.
  • In cases where none of the above conditions are met, the function defaults to the Mercator projection.
  • For Geometries that cross the IDL, ST_BestSRID defaults the SRID to Mercator. Currently, ST_BestSRID does not handle geometries crossing the IDL.

Warning

ST_BestSRID is designed to estimate a suitable SRID from a set of approximately 125 EPSG codes and works best for geometries that fit within the UTM zones. It should not be solely relied upon to determine the most accurate SRID, especially for specialized or high-precision spatial requirements.

Format: ST_BestSRID(geom: Geometry)

Since: v1.6.0

SQL Example:

SELECT ST_BestSRID(ST_GeomFromWKT('POLYGON((-73.9980 40.7265, -73.9970 40.7265, -73.9970 40.7255, -73.9980 40.7255, -73.9980 40.7265))'))

Output:

32618

ST_Boundary

Introduction: Returns the closure of the combinatorial boundary of this Geometry.

Format: ST_Boundary(geom: Geometry)

Since: v1.3.0

Example:

SELECT ST_Boundary(ST_GeomFromText('POLYGON ((1 1, 0 0, -1 1, 1 1))'))

Output:

LINEARRING (1 1, 0 0, -1 1, 1 1)

ST_BoundingDiagonal

Introduction: Returns a linestring spanning minimum and maximum values of each dimension of the given geometry's coordinates as its start and end point respectively. If an empty geometry is provided, the returned LineString is also empty. If a single vertex (POINT) is provided, the returned LineString has both the start and end points same as the points coordinates

Format: ST_BoundingDiagonal(geom: Geometry)

Since: v1.5.0

Example:

SELECT ST_BoundingDiagonal(ST_GeomFromWKT(geom))

Input: POLYGON ((1 1 1, 3 3 3, 0 1 4, 4 4 0, 1 1 1))

Output: LINESTRING Z(0 1 1, 4 4 4)

Input: POINT (10 10)

Output: LINESTRING (10 10, 10 10)

Input: GEOMETRYCOLLECTION(POLYGON ((5 5 5, -1 2 3, -1 -1 0, 5 5 5)), POINT (10 3 3))

Output: LINESTRING Z(-1 -1 0, 10 5 5)

ST_Buffer

Introduction: Returns a geometry/geography that represents all points whose distance from this Geometry/geography is less than or equal to distance. The function supports both Planar/Euclidean and Spheroidal/Geodesic buffering (Since v1.6.0). Spheroidal buffer also supports geometries crossing the International Date Line (IDL).

Mode of buffer calculation (Since: v1.6.0):

The optional third parameter, useSpheroid, controls the mode of buffer calculation.

  • Planar Buffering (default): When useSpheroid is false, ST_Buffer performs standard planar buffering based on the provided parameters.
  • Spheroidal Buffering:
    • When useSpheroid is set to true, the function returns the spheroidal buffer polygon for more accurate representation over the Earth. In this mode, the unit of the buffer distance is interpreted as meters.
    • ST_Buffer first determines the most appropriate Spatial Reference Identifier (SRID) for a given geometry, based on its spatial extent and location, using ST_BestSRID.
    • The geometry is then transformed from its original SRID to the selected SRID. If the input geometry does not have a set SRID, ST_Buffer defaults to using WGS 84 (SRID 4326) as its original SRID.
    • The standard planar buffer operation is then applied in this coordinate system.
    • Finally, the buffered geometry is transformed back to its original SRID, or to WGS 84 if the original SRID was not set.

Note

Spheroidal buffering only supports lon/lat coordinate systems and will throw an IllegalArgumentException for input geometries in meter based coordinate systems.

Note

Spheroidal buffering may not produce accurate output buffer for input geometries larger than a UTM zone.

Buffer Style Parameters:

The optional forth parameter controls the buffer accuracy and style. Buffer accuracy is specified by the number of line segments approximating a quarter circle, with a default of 8 segments. Buffer style can be set by providing blank-separated key=value pairs in a list format.

  • quad_segs=# : Number of line segments utilized to approximate a quarter circle (default is 8).
  • endcap=round|flat|square : End cap style (default is round). butt is an accepted synonym for flat.
  • join=round|mitre|bevel : Join style (default is round). miter is an accepted synonym for mitre.
  • mitre_limit=#.# : mitre ratio limit and it only affects mitred join style. miter_limit is an accepted synonym for mitre_limit.
  • side=both|left|right : The option left or right enables a single-sided buffer operation on the geometry, with the buffered side aligned according to the direction of the line. This functionality is specific to LINESTRING geometry and has no impact on POINT or POLYGON geometries. By default, square end caps are applied.

Note

ST_Buffer throws an IllegalArgumentException if the correct format, parameters, or options are not provided.

Format:

ST_Buffer (A: Geometry, buffer: Double)
ST_Buffer (A: Geometry, buffer: Double, useSpheroid: Boolean)
ST_Buffer (A: Geometry, buffer: Double, useSpheroid: Boolean, bufferStyleParameters: String)

Since: v1.5.1

SQL Example:

SELECT ST_Buffer(ST_GeomFromWKT('POINT(0 0)'), 10)
SELECT ST_Buffer(ST_GeomFromWKT('POINT(0 0)'), 10, false, 'quad_segs=2')

Output:

Point buffer with 8 quadrant segments Point buffer with 2 quadrant segments

8 Segments   2 Segments

SQL Example:

SELECT ST_Buffer(ST_GeomFromWKT('LINESTRING(0 0, 50 70, 100 100)'), 10, false, 'side=left')

Output:

Original Linestring Original Linestring with buffer on the left side

Original Linestring   Left side buffed Linestring

ST_BuildArea

Introduction: Returns the areal geometry formed by the constituent linework of the input geometry.

Format: ST_BuildArea (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_BuildArea(ST_Collect(smallDf, bigDf)) AS geom
FROM smallDf, bigDf

Input: MULTILINESTRING((0 0, 10 0, 10 10, 0 10, 0 0),(10 10, 20 10, 20 20, 10 20, 10 10))

Output: MULTIPOLYGON(((0 0,0 10,10 10,10 0,0 0)),((10 10,10 20,20 20,20 10,10 10)))

ST_Centroid

Introduction: Return the centroid point of A

Format: ST_Centroid (A: Geometry)

Since: v1.5.0

Example:

SELECT ST_Centroid(ST_GeomFromWKT('MULTIPOINT(-1  0, -1 2, 7 8, 9 8, 10 6)'))

Output:

POINT (4.8 4.8)

ST_ClosestPoint

Introduction: Returns the 2-dimensional point on geom1 that is closest to geom2. This is the first point of the shortest line between the geometries. If using 3D geometries, the Z coordinates will be ignored. If you have a 3D Geometry, you may prefer to use ST_3DClosestPoint. It will throw an exception indicates illegal argument if one of the params is an empty geometry.

Format: ST_ClosestPoint(g1: Geometry, g2: Geometry)

Since: v1.5.0

Example:

SELECT ST_AsText( ST_ClosestPoint(g1, g2)) As ptwkt;

Input: g1: POINT (160 40), g2: LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)

Output: POINT(160 40)

Input: g1: LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190), g2: POINT (160 40)

Output: POINT(125.75342465753425 115.34246575342466)

Input: g1: 'POLYGON ((190 150, 20 10, 160 70, 190 150))', g2: ST_Buffer('POINT(80 160)', 30)

Output: POINT(131.59149149528952 101.89887534906197)

ST_Collect

Introduction: Returns MultiGeometry object based on geometry column/s or array with geometries

Format:

ST_Collect(*geom: Geometry)

ST_Collect(geom: ARRAY[Geometry])

Since: v1.5.0

Example:

SELECT ST_Collect(
    ST_GeomFromText('POINT(21.427834 52.042576573)'),
    ST_GeomFromText('POINT(45.342524 56.342354355)')
) AS geom

Result:

+---------------------------------------------------------------+
|geom                                                           |
+---------------------------------------------------------------+
|MULTIPOINT ((21.427834 52.042576573), (45.342524 56.342354355))|
+---------------------------------------------------------------+

Example:

SELECT ST_Collect(
    Array(
        ST_GeomFromText('POINT(21.427834 52.042576573)'),
        ST_GeomFromText('POINT(45.342524 56.342354355)')
    )
) AS geom

Result:

+---------------------------------------------------------------+
|geom                                                           |
+---------------------------------------------------------------+
|MULTIPOINT ((21.427834 52.042576573), (45.342524 56.342354355))|
+---------------------------------------------------------------+

ST_CollectionExtract

Introduction: Returns a homogeneous multi-geometry from a given geometry collection.

The type numbers are: 1. POINT 2. LINESTRING 3. POLYGON

If the type parameter is omitted a multi-geometry of the highest dimension is returned.

Format:

ST_CollectionExtract (A: Geometry)

ST_CollectionExtract (A: Geometry, type: Integer)

Since: v1.5.0

Example:

WITH test_data as (
    ST_GeomFromText(
        'GEOMETRYCOLLECTION(POINT(40 10), POLYGON((0 0, 0 5, 5 5, 5 0, 0 0)))'
    ) as geom
)
SELECT ST_CollectionExtract(geom) as c1, ST_CollectionExtract(geom, 1) as c2
FROM test_data

Result:

+----------------------------------------------------------------------------+
|c1                                        |c2                               |
+----------------------------------------------------------------------------+
|MULTIPOLYGON(((0 0, 0 5, 5 5, 5 0, 0 0))) |MULTIPOINT(40 10)                |              |
+----------------------------------------------------------------------------+

ST_ConcaveHull

Introduction: Return the Concave Hull of polygon A, with alpha set to pctConvex[0, 1] in the Delaunay Triangulation method, the concave hull will not contain a hole unless allowHoles is set to true

Format:

ST_ConcaveHull (A: Geometry, pctConvex: Double)

ST_ConcaveHull (A: Geometry, pctConvex: Double, allowHoles: Boolean)

Since: v1.4.0

Example:

SELECT ST_ConcaveHull(ST_GeomFromWKT('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'), 1)

Output:

POLYGON ((125 100, 20 40, 50 60, 175 150, 125 100))

ST_ConvexHull

Introduction: Return the Convex Hull of polygon A

Format: ST_ConvexHull (A: Geometry)

Since: v1.5.0

Example:

SELECT ST_ConvexHull(ST_GeomFromText('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'))

Output:

POLYGON ((20 40, 175 150, 125 100, 20 40))

ST_CoordDim

Introduction: Returns the coordinate dimensions of the geometry. It is an alias of ST_NDims.

Format: ST_CoordDim(geom: Geometry)

Since: v1.5.0

Example with x, y, z coordinate:

SELECT ST_CoordDim(ST_GeomFromText('POINT(1 1 2'))

Output:

3

Example with x, y coordinate:

SELECT ST_CoordDim(ST_GeomFromWKT('POINT(3 7)'))

Output:

2

ST_CrossesDateLine

Introduction: This function determines if a given geometry crosses the International Date Line. It operates by checking if the difference in longitude between any pair of consecutive points in the geometry exceeds 180 degrees. If such a difference is found, it is assumed that the geometry crosses the Date Line. It returns true if the geometry crosses the Date Line, and false otherwise.

Note

The function assumes that the provided geometry is in lon/lat coordinate reference system where longitude values range from -180 to 180 degrees.

Note

For multi-geometries (e.g., MultiPolygon, MultiLineString), this function will return true if any one of the geometries within the multi-geometry crosses the International Date Line.

Format: ST_CrossesDateLine(geometry: Geometry)

Since: v1.6.0

SQL Example:

SELECT ST_CrossesDateLine(ST_GeomFromWKT('LINESTRING(170 30, -170 30)'))

Output:

true

Warning

For geometries that span more than 180 degrees in longitude without actually crossing the Date Line, this function may still return true, indicating a crossing.

ST_Dimension

Introduction: Return the topological dimension of this Geometry object, which must be less than or equal to the coordinate dimension. OGC SPEC s2.1.1.1 - returns 0 for POINT, 1 for LINESTRING, 2 for POLYGON, and the largest dimension of the components of a GEOMETRYCOLLECTION. If the dimension is unknown (e.g. for an empty GEOMETRYCOLLECTION) 0 is returned.

Format: ST_Dimension (A: Geometry) | ST_Dimension (C: Geometrycollection)

Since: v1.5.0

Example:

SELECT ST_Dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0))');

Result:

1

ST_Distance

Introduction: Return the Euclidean distance between A and B

Format: ST_Distance (A: Geometry, B: Geometry)

Since: v1.2.0

Example:

SELECT ST_Distance(ST_GeomFromText('POINT(72 42)'), ST_GeomFromText('LINESTRING(-72 -42, 82 92)'))

Output:

31.155515639003543

ST_DistanceSphere

Introduction: Return the haversine / great-circle distance of A using a given earth radius (default radius: 6371008.0). Unit is meter. Works better for large geometries (country level) compared to ST_Distance + ST_Transform. It is equivalent to PostGIS ST_Distance(geography, use_spheroid=false) and ST_DistanceSphere function and produces nearly identical results. It provides faster but less accurate result compared to ST_DistanceSpheroid.

Geometry must be in EPSG:4326 (WGS84) projection and must be in lon/lat order. You can use ST_FlipCoordinates to swap lat and lon. For non-point data, we first take the centroids of both geometries and then compute the distance.

Note

By default, this function uses lon/lat order since v1.5.0. Before, it used lat/lon order.

Format: ST_DistanceSphere (A: Geometry)

Since: v1.4.1

Example 1:

SELECT ST_DistanceSphere(ST_GeomFromWKT('POINT (-0.56 51.3168)'), ST_GeomFromWKT('POINT (-3.1883 55.9533)'))

Output:

543796.9506134904

Example 2:

SELECT ST_DistanceSphere(ST_GeomFromWKT('POINT (-0.56 51.3168)'), ST_GeomFromWKT('POINT (-3.1883 55.9533)'), 6378137.0)

Output:

544405.4459192449

ST_DistanceSpheroid

Introduction: Return the geodesic distance of A using WGS84 spheroid. Unit is meter. Works better for large geometries (country level) compared to ST_Distance + ST_Transform. It is equivalent to PostGIS ST_Distance(geography, use_spheroid=true) and ST_DistanceSpheroid function and produces nearly identical results. It provides slower but more accurate result compared to ST_DistanceSphere.

Geometry must be in EPSG:4326 (WGS84) projection and must be in lon/lat order. You can use ST_FlipCoordinates to swap lat and lon. For non-point data, we first take the centroids of both geometries and then compute the distance.

Note

By default, this function uses lon/lat order since v1.5.0. Before, it used lat/lon order.

Format: ST_DistanceSpheroid (A: Geometry)

Since: v1.4.1

Example:

SELECT ST_DistanceSpheroid(ST_GeomFromWKT('POINT (-0.56 51.3168)'), ST_GeomFromWKT('POINT (-3.1883 55.9533)'))

Output:

544430.9411996207

ST_Degrees

Introduction: Convert an angle in radian to degrees.

Format: ST_Degrees(angleInRadian)

Since: v1.5.0

Example:

SELECT ST_Degrees(0.19739555984988044)

Output:

11.309932474020195

ST_Difference

Introduction: Return the difference between geometry A and B (return part of geometry A that does not intersect geometry B)

Format: ST_Difference (A: Geometry, B: Geometry)

Since: v1.5.0

Example:

SELECT ST_Difference(ST_GeomFromWKT('POLYGON ((-3 -3, 3 -3, 3 3, -3 3, -3 -3))'), ST_GeomFromWKT('POLYGON ((0 -4, 4 -4, 4 4, 0 4, 0 -4))'))

Result:

POLYGON ((0 -3, -3 -3, -3 3, 0 3, 0 -3))

ST_Dump

Introduction: It expands the geometries. If the geometry is simple (Point, Polygon Linestring etc.) it returns the geometry itself, if the geometry is collection or multi it returns record for each of collection components.

Format: ST_Dump(geom: Geometry)

Since: v1.5.0

Example:

SELECT ST_Dump(ST_GeomFromText('MULTIPOINT ((10 40), (40 30), (20 20), (30 10))'))

Output:

[POINT (10 40), POINT (40 30), POINT (20 20), POINT (30 10)]

ST_DumpPoints

Introduction: Returns list of Points which geometry consists of.

Format: ST_DumpPoints(geom: Geometry)

Since: v1.5.0

Example:

SELECT ST_DumpPoints(ST_GeomFromText('LINESTRING (0 0, 1 1, 1 0)'))

Output:

[POINT (0 0), POINT (0 1), POINT (1 1), POINT (1 0), POINT (0 0)]

ST_EndPoint

Introduction: Returns last point of given linestring.

Format: ST_EndPoint(geom: Geometry)

Since: v1.5.0

Example:

SELECT ST_EndPoint(ST_GeomFromText('LINESTRING(100 150,50 60, 70 80, 160 170)'))

Output:

POINT(160 170)

ST_Envelope

Introduction: Return the envelope boundary of A

Format: ST_Envelope (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_Envelope(ST_GeomFromWKT('LINESTRING(0 0, 1 3)'))

Output:

POLYGON ((0 0, 0 3, 1 3, 1 0, 0 0))

ST_ExteriorRing

Introduction: Returns a LINESTRING representing the exterior ring (shell) of a POLYGON. Returns NULL if the geometry is not a polygon.

Format: ST_ExteriorRing(A: Geometry)

Since: v1.2.1

Example:

SELECT ST_ExteriorRing(ST_GeomFromText('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))'))

Output:

LINESTRING (0 0, 1 1, 1 2, 1 1, 0 0)

ST_FlipCoordinates

Introduction: Returns a version of the given geometry with X and Y axis flipped.

Format: ST_FlipCoordinates(A: Geometry)

Since: v1.2.0

Example:

SELECT ST_FlipCoordinates(ST_GeomFromWKT("POINT (1 2)"))

Output:

POINT (2 1)

ST_Force_2D

Introduction: Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y coordinates

Format: ST_Force_2D (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_Force_2D(ST_GeomFromText('POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))'))

Output:

POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))

ST_Force3D

Introduction: Forces the geometry into a 3-dimensional model so that all output representations will have X, Y and Z coordinates. An optionally given zValue is tacked onto the geometry if the geometry is 2-dimensional. Default value of zValue is 0.0 If the given geometry is 3-dimensional, no change is performed on it. If the given geometry is empty, no change is performed on it.

Note

Example output is after calling ST_AsText() on returned geometry, which adds Z for in the WKT for 3D geometries

Format: ST_Force3D(geometry: Geometry, zValue: Double)

Since: v1.4.1

Example:

SELECT ST_AsText(ST_Force3D(ST_GeomFromText('POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))'), 2.3))

Output:

POLYGON Z((0 0 2, 0 5 2, 5 0 2, 0 0 2), (1 1 2, 3 1 2, 1 3 2, 1 1 2))

Example:

SELECT ST_AsText(ST_Force3D(ST_GeomFromText('LINESTRING(0 1,1 0,2 0)'), 2.3))

Output:

LINESTRING Z(0 1 2.3, 1 0 2.3, 2 0 2.3)

Example:

SELECT ST_AsText(ST_Force3D(ST_GeomFromText('LINESTRING EMPTY'), 3))

Output:

LINESTRING EMPTY

ST_ForcePolygonCCW

Introduction: For (Multi)Polygon geometries, this function sets the exterior ring orientation to counter-clockwise and interior rings to clockwise orientation. Non-polygonal geometries are returned unchanged.

Format: ST_ForcePolygonCCW(geom: Geometry)

Since: v1.6.0

SQL Example:

SELECT ST_AsText(ST_ForcePolygonCCW(ST_GeomFromText('POLYGON ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20))')))

Output:

POLYGON ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35), (30 20, 20 15, 20 25, 30 20))

ST_ForcePolygonCW

Introduction: For (Multi)Polygon geometries, this function sets the exterior ring orientation to clockwise and interior rings to counter-clockwise orientation. Non-polygonal geometries are returned unchanged.

Format: ST_ForcePolygonCW(geom: Geometry)

Since: v1.6.0

SQL Example:

SELECT ST_AsText(ST_ForcePolygonCW(ST_GeomFromText('POLYGON ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35),(30 20, 20 15, 20 25, 30 20))')))

Output:

POLYGON ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20))

ST_FrechetDistance

Introduction: Computes and returns discrete Frechet Distance between the given two geometries, based on Computing Discrete Frechet Distance

If any of the geometries is empty, returns 0.0

Format: ST_FrechetDistance(g1: Geometry, g2: Geometry)

Since: v1.5.0

Example:

SELECT ST_FrechetDistance(ST_GeomFromWKT('POINT (0 1)'), ST_GeomFromWKT('LINESTRING (0 0, 1 0, 2 0, 3 0, 4 0, 5 0)'))

Output:

5.0990195135927845

ST_GeoHash

Introduction: Returns GeoHash of the geometry with given precision

Format: ST_GeoHash(geom: Geometry, precision: Integer)

Since: v1.2.0

Example:

SELECT ST_GeoHash(ST_GeomFromText('POINT(21.427834 52.042576573)'), 5) AS geohash

Output:

u3r0p

ST_GeometricMedian

Introduction: Computes the approximate geometric median of a MultiPoint geometry using the Weiszfeld algorithm. The geometric median provides a centrality measure that is less sensitive to outlier points than the centroid.

The algorithm will iterate until the distance change between successive iterations is less than the supplied tolerance parameter. If this condition has not been met after maxIter iterations, the function will produce an error and exit, unless failIfNotConverged is set to false.

If a tolerance value is not provided, a default tolerance value is 1e-6.

Format:

ST_GeometricMedian(geom: Geometry, tolerance: Double, maxIter: Integer, failIfNotConverged: Boolean)
ST_GeometricMedian(geom: Geometry, tolerance: Double, maxIter: Integer)
ST_GeometricMedian(geom: Geometry, tolerance: Double)
ST_GeometricMedian(geom: Geometry)

Default parameters: tolerance: 1e-6, maxIter: 1000, failIfNotConverged: false

Since: v1.4.1

Example:

SELECT ST_GeometricMedian(ST_GeomFromWKT('MULTIPOINT((0 0), (1 1), (2 2), (200 200))'))

Output:

POINT (1.9761550281255005 1.9761550281255005)

ST_GeometryN

Introduction: Return the 0-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON. Otherwise, return null

Format: ST_GeometryN(geom: Geometry, n: Integer)

Since: v1.3.0

Example:

SELECT ST_GeometryN(ST_GeomFromText('MULTIPOINT((1 2), (3 4), (5 6), (8 9))'), 1)

Output:

POINT (3 4)

ST_GeometryType

Introduction: Returns the type of the geometry as a string. EG: 'ST_Linestring', 'ST_Polygon' etc.

Format: ST_GeometryType (A: Geometry)

Since: v1.5.0

Example:

SELECT ST_GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'))

Output:

ST_LINESTRING

ST_H3CellDistance

Introduction: return result of h3 function gridDistance(cel1, cell2). As described by H3 documentation

Finding the distance can fail because the two indexes are not comparable (different resolutions), too far apart, or are separated by pentagonal distortion. This is the same set of limitations as the local IJ coordinate space functions.

In this case, Sedona use in-house implementation of estimation the shortest path and return the size as distance.

Format: ST_H3CellDistance(cell1: Long, cell2: Long)

Since: v1.5.0

Example:

select ST_H3CellDistance(ST_H3CellIDs(ST_GeomFromWKT('POINT(1 2)'), 8, true)[1], ST_H3CellIDs(ST_GeomFromWKT('POINT(1.23 1.59)'), 8, true)[1])

Output:

+----+----------------------+
| op |               EXPR$0 |
+----+----------------------+
| +I |                   78 |
+----+----------------------+

ST_H3CellIDs

Introduction: Cover the geometry by H3 cell IDs with the given resolution(level). To understand the cell statistics please refer to H3 Doc H3 native fill functions doesn't guarantee full coverage on the shapes.

Cover Polygon

When fullCover = false, for polygon sedona will use polygonToCells. This can't guarantee full coverage but will guarantee no false positive.

When fullCover = true, sedona will add on extra traversal logic to guarantee full coverage on shapes. This will lead to redundancy but can guarantee full coverage.

Choose the option according to your use case.

Cover LineString

For the lineString, sedona will call gridPathCells(https://h3geo.org/docs/api/traversal#gridpathcells) per segment. From H3's documentation

This function may fail to find the line between two indexes, for example if they are very far apart. It may also fail when finding distances for indexes on opposite sides of a pentagon.

When the gridPathCells function throw error, Sedona implemented in-house approximate implementation to generate the shortest path, which can cover the corner cases.

Both functions can't guarantee full coverage. When the fullCover = true, we'll do extra cell traversal to guarantee full cover. In worst case, sedona will use MBR to guarantee the full coverage.

If you seek to get the shortest path between cells, you can call this function with fullCover = false

Format: ST_H3CellIDs(geom: geometry, level: Int, fullCover: true)

Since: v1.5.0

Example:

SELECT ST_H3CellIDs(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'), 6, true)

Output:

+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I | [605547539457900543, 605547... |
+----+--------------------------------+

ST_H3KRing

Introduction: return the result of H3 function gridDisk(cell, k).

K means the distance of the origin index, gridDisk(cell, k) return cells with distance <=k from the original cell.

exactRing : Boolean, when set to true, sedona will remove the result of gridDisk(cell, k-1) from the original results, means only keep the cells with distance exactly k from the original cell

Format: ST_H3KRing(cell: Long, k: Int, exactRing: Boolean)

Since: v1.5.0

Example:

select ST_H3KRing(ST_H3CellIDs(ST_GeomFromWKT('POINT(1 2)'), 8, true)[1], 1, false), ST_H3KRing(ST_H3CellIDs(ST_GeomFromWKT('POINT(1 2)'), 8, true)[1], 1, true)

Output:

+----+--------------------------------+--------------------------------+
| op |                         EXPR$0 |                         EXPR$1 |
+----+--------------------------------+--------------------------------+
| +I | [614552609325318143, 614552... | [614552597293957119, 614552... |
+----+--------------------------------+--------------------------------+

ST_H3ToGeom

Introduction: Return the result of H3 function cellsToMultiPolygon(cells).

Converts an array of Uber H3 cell indices into an array of Polygon geometries, where each polygon represents a hexagonal H3 cell.

Hint

To convert a Polygon array to MultiPolygon, use ST_Collect. However, the result may be an invalid geometry. Apply ST_MakeValid to the ST_Collect output to ensure a valid MultiPolygon.

An alternative approach to consolidate a Polygon array into a Polygon/MultiPolygon, use the ST_Union function.

Format: ST_H3ToGeom(cells: Array[Long])

Since: v1.6.0

Example:

SELECT ST_H3ToGeom(ST_H3CellIDs(ST_GeomFromWKT('POINT(1 2)'), 8, true)[0], 1, true))

Output:

[POLYGON ((1.0057629565405093 1.9984665139177547, 1.0037116327309097 2.0018325249140068, 0.999727799357053 2.001163270465665, 0.9977951427833316 1.997128228393235, 0.9998461908217928 1.993762152933182, 1.0038301712104316 1.9944311839965523, 1.0057629565405093 1.9984665139177547))]

ST_HausdorffDistance

Introduction: Returns a discretized (and hence approximate) Hausdorff distance between the given 2 geometries. Optionally, a densityFraction parameter can be specified, which gives more accurate results by densifying segments before computing hausdorff distance between them. Each segment is broken down into equal-length subsegments whose ratio with segment length is closest to the given density fraction.

Hence, the lower the densityFrac value, the more accurate is the computed hausdorff distance, and the more time it takes to compute it.

If any of the geometry is empty, 0.0 is returned.

Note

Accepted range of densityFrac is (0.0, 1.0], if any other value is provided, ST_HausdorffDistance throws an IllegalArgumentException

Note

Even though the function accepts 3D geometry, the z ordinate is ignored and the computed hausdorff distance is equivalent to the geometries not having the z ordinate.

Format: ST_HausdorffDistance(g1: Geometry, g2: Geometry, densityFrac: Double)

Since: v1.5.0

Example:

SELECT ST_HausdorffDistance(ST_GeomFromWKT('POINT (0.0 1.0)'), ST_GeomFromWKT('LINESTRING (0 0, 1 0, 2 0, 3 0, 4 0, 5 0)'), 0.1)

Output:

5.0990195135927845

Example:

SELECT ST_HausdorffDistance(ST_GeomFromText('POLYGON Z((1 0 1, 1 1 2, 2 1 5, 2 0 1, 1 0 1))'), ST_GeomFromText('POLYGON Z((4 0 4, 6 1 4, 6 4 9, 6 1 3, 4 0 4))'))

Output:

5.0

ST_InteriorRingN

Introduction: Returns the Nth interior linestring ring of the polygon geometry. Returns NULL if the geometry is not a polygon or the given N is out of range

Format: ST_InteriorRingN(geom: Geometry, n: Integer)

Since: v1.3.0

Example:

SELECT ST_InteriorRingN(ST_GeomFromText('POLYGON((0 0, 0 5, 5 5, 5 0, 0 0), (1 1, 2 1, 2 2, 1 2, 1 1), (1 3, 2 3, 2 4, 1 4, 1 3), (3 3, 4 3, 4 4, 3 4, 3 3))'), 0)

Output:

LINEARRING (1 1, 2 1, 2 2, 1 2, 1 1)

ST_Intersection

Introduction: Return the intersection geometry of A and B

Format: ST_Intersection (A: Geometry, B: Geometry)

Since: v1.5.0

Example:

SELECT ST_Intersection(
    ST_GeomFromWKT("POLYGON((1 1, 8 1, 8 8, 1 8, 1 1))"),
    ST_GeomFromWKT("POLYGON((2 2, 9 2, 9 9, 2 9, 2 2))")
    )

Output:

POLYGON ((2 8, 8 8, 8 2, 2 2, 2 8))

ST_IsClosed

Introduction: RETURNS true if the LINESTRING start and end point are the same.

Format: ST_IsClosed(geom: Geometry)

Since: v1.3.0

Example:

SELECT ST_IsClosed(ST_GeomFromText('LINESTRING(0 0, 1 1, 1 0)'))

Output:

false

ST_IsCollection

Introduction: Returns TRUE if the geometry type of the input is a geometry collection type. Collection types are the following:

  • GEOMETRYCOLLECTION
  • MULTI{POINT, POLYGON, LINESTRING}

Format: ST_IsCollection(geom: Geometry)

Since: v1.5.0

Example:

SELECT ST_IsCollection(ST_GeomFromText('MULTIPOINT(0 0), (6 6)'))

Output:

true

Example:

SELECT ST_IsCollection(ST_GeomFromText('POINT(5 5)'))

Output:

false

ST_IsEmpty

Introduction: Test if a geometry is empty geometry

Format: ST_IsEmpty (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_IsEmpty(ST_GeomFromWKT('POLYGON((0 0,0 1,1 1,1 0,0 0))'))

Output:

false

ST_IsPolygonCCW

Introduction: Returns true if all polygonal components in the input geometry have their exterior rings oriented counter-clockwise and interior rings oriented clockwise.

Format: ST_IsPolygonCCW(geom: Geometry)

Since: v1.6.0

SQL Example:

SELECT ST_IsPolygonCCW(ST_GeomFromWKT('POLYGON ((20 35, 10 30, 10 10, 30 5, 45 20, 20 35), (30 20, 20 15, 20 25, 30 20))'))

Output:

true

ST_IsPolygonCW

Introduction: Returns true if all polygonal components in the input geometry have their exterior rings oriented counter-clockwise and interior rings oriented clockwise.

Format: ST_IsPolygonCW(geom: Geometry)

Since: v1.6.0

SQL Example:

SELECT ST_IsPolygonCW(ST_GeomFromWKT('POLYGON ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20))'))

Output:

true

ST_IsRing

Introduction: RETURN true if LINESTRING is ST_IsClosed and ST_IsSimple.

Format: ST_IsRing(geom: Geometry)

Since: v1.3.0

Example:

SELECT ST_IsRing(ST_GeomFromText("LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)"))

Output:

true

ST_IsSimple

Introduction: Test if geometry's only self-intersections are at boundary points.

Format: ST_IsSimple (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_IsSimple(ST_GeomFromWKT('POLYGON((1 1, 3 1, 3 3, 1 3, 1 1))'))

Output:

true

ST_IsValid

Introduction: Test if a geometry is well formed. The function can be invoked with just the geometry or with an additional flag (from v1.5.1). The flag alters the validity checking behavior. The flags parameter is a bitfield with the following options:

  • 0 (default): Use usual OGC SFS (Simple Features Specification) validity semantics.
  • 1: "ESRI flag", Accepts certain self-touching rings as valid, which are considered invalid under OGC standards.

Formats:

ST_IsValid (A: Geometry)
ST_IsValid (A: Geometry, flag: Integer)

Since: v1.0.0

SQL Example:

SELECT ST_IsValid(ST_GeomFromWKT('POLYGON((0 0, 10 0, 10 10, 0 10, 0 0), (15 15, 15 20, 20 20, 20 15, 15 15))'))

Output:

false

ST_IsValidReason

Introduction: Returns text stating if the geometry is valid. If not, it provides a reason why it is invalid. The function can be invoked with just the geometry or with an additional flag. The flag alters the validity checking behavior. The flags parameter is a bitfield with the following options:

  • 0 (default): Use usual OGC SFS (Simple Features Specification) validity semantics.
  • 1: "ESRI flag", Accepts certain self-touching rings as valid, which are considered invalid under OGC standards.

Formats:

ST_IsValidReason (A: Geometry)
ST_IsValidReason (A: Geometry, flag: Integer)

Since: v1.5.1

SQL Example for valid geometry:

SELECT ST_IsValidReason(ST_GeomFromWKT('POLYGON ((100 100, 100 300, 300 300, 300 100, 100 100))')) as validity_info

Output:

Valid Geometry

SQL Example for invalid geometries:

SELECT gid, ST_IsValidReason(geom) as validity_info
FROM Geometry_table
WHERE ST_IsValid(geom) = false
ORDER BY gid

Output:

gid  |                  validity_info
-----+----------------------------------------------------
5330 | Self-intersection at or near point (32.0, 5.0, NaN)
5340 | Self-intersection at or near point (42.0, 5.0, NaN)
5350 | Self-intersection at or near point (52.0, 5.0, NaN)

ST_Length

Introduction: Return the perimeter of A

Format: ST_Length (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_Length(ST_GeomFromWKT('LINESTRING(38 16,38 50,65 50,66 16,38 16)'))

Output:

123.0147027033899

ST_LengthSpheroid

Introduction: Return the geodesic perimeter of A using WGS84 spheroid. Unit is meter. Works better for large geometries (country level) compared to ST_Length + ST_Transform. It is equivalent to PostGIS ST_Length(geography, use_spheroid=true) and ST_LengthSpheroid function and produces nearly identical results.

Geometry must be in EPSG:4326 (WGS84) projection and must be in lon/lat order. You can use ST_FlipCoordinates to swap lat and lon.

Note

By default, this function uses lon/lat order since v1.5.0. Before, it used lat/lon order.

Format: ST_LengthSpheroid (A: Geometry)

Since: v1.4.1

Example:

SELECT ST_LengthSpheroid(ST_GeomFromWKT('Polygon ((0 0, 90 0, 0 0))'))

Output:

20037508.342789244

ST_LineFromMultiPoint

Introduction: Creates a LineString from a MultiPoint geometry.

Format: ST_LineFromMultiPoint (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_LineFromMultiPoint(ST_GeomFromText('MULTIPOINT((10 40), (40 30), (20 20), (30 10))'))

Output:

LINESTRING (10 40, 40 30, 20 20, 30 10)

ST_LineInterpolatePoint

Introduction: Returns a point interpolated along a line. First argument must be a LINESTRING. Second argument is a Double between 0 and 1 representing fraction of total linestring length the point has to be located.

Format: ST_LineInterpolatePoint (geom: Geometry, fraction: Double)

Since: v1.5.0

Example:

SELECT ST_LineInterpolatePoint(ST_GeomFromWKT('LINESTRING(25 50, 100 125, 150 190)'), 0.2)

Output:

POINT (51.5974135047432 76.5974135047432)

ST_LineLocatePoint

Introduction: Returns a double between 0 and 1, representing the location of the closest point on the LineString as a fraction of its total length. The first argument must be a LINESTRING, and the second argument is a POINT geometry.

Format: ST_LineLocatePoint(linestring: Geometry, point: Geometry)

Since: v1.5.1

SQL Example:

SELECT ST_LineLocatePoint(ST_GeomFromWKT('LINESTRING(0 0, 1 1, 2 2)'), ST_GeomFromWKT('POINT(0 2)'))

Output:

0.5

ST_LineMerge

Introduction: Returns a LineString formed by sewing together the constituent line work of a MULTILINESTRING.

Note

Only works for MULTILINESTRING. Using other geometry will return a GEOMETRYCOLLECTION EMPTY. If the MultiLineString can't be merged, the original MULTILINESTRING is returned.

Format: ST_LineMerge (A: Geometry)

Since: v1.5.0

Example:

SELECT ST_LineMerge(ST_GeomFromWKT('MULTILINESTRING ((-29 -27, -30 -29.7, -45 -33), (-45 -33, -46 -32))'))

Output:

LINESTRING (-29 -27, -30 -29.7, -45 -33, -46 -32)

ST_LineSubstring

Introduction: Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and third arguments are Double values between 0 and 1. This only works with LINESTRINGs.

Format: ST_LineSubstring (geom: Geometry, startfraction: Double, endfraction: Double)

Since: v1.5.0

Example:

SELECT ST_LineSubstring(ST_GeomFromWKT('LINESTRING(25 50, 100 125, 150 190)'), 0.333, 0.666)

Output:

LINESTRING (69.28469348539744 94.28469348539744, 100 125, 111.70035626068274 140.21046313888758)

ST_MakeLine

Introduction: Creates a LineString containing the points of Point, MultiPoint, or LineString geometries. Other geometry types cause an error.

Format:

ST_MakeLine(geom1: Geometry, geom2: Geometry)

ST_MakeLine(geoms: ARRAY[Geometry])

Since: v1.5.0

Example:

SELECT ST_AsText( ST_MakeLine(ST_Point(1,2), ST_Point(3,4)) );

Output:

LINESTRING(1 2,3 4)

Example:

SELECT ST_AsText( ST_MakeLine( 'LINESTRING(0 0, 1 1)', 'LINESTRING(2 2, 3 3)' ) );

Output:

 LINESTRING(0 0,1 1,2 2,3 3)

ST_MakePolygon

Introduction: Function to convert closed linestring to polygon including holes

Format: ST_MakePolygon(geom: Geometry, holes: ARRAY[Geometry])

Since: v1.5.0

Example:

SELECT ST_MakePolygon(
        ST_GeomFromText('LINESTRING(7 -1, 7 6, 9 6, 9 1, 7 -1)'),
        ARRAY(ST_GeomFromText('LINESTRING(6 2, 8 2, 8 1, 6 1, 6 2)'))
    )

Output:

POLYGON ((7 -1, 7 6, 9 6, 9 1, 7 -1), (6 2, 8 2, 8 1, 6 1, 6 2))

ST_MakeValid

Introduction: Given an invalid geometry, create a valid representation of the geometry.

Collapsed geometries are either converted to empty (keepCollapsed=true) or a valid geometry of lower dimension (keepCollapsed=false). Default is keepCollapsed=false.

Format:

ST_MakeValid (A: Geometry)

ST_MakeValid (A: Geometry, keepCollapsed: Boolean)

Since: v1.5.0

Example:

WITH linestring AS (
    SELECT ST_GeomFromWKT('LINESTRING(1 1, 1 1)') AS geom
) SELECT ST_MakeValid(geom), ST_MakeValid(geom, true) FROM linestring

Result:

+------------------+------------------------+
|st_makevalid(geom)|st_makevalid(geom, true)|
+------------------+------------------------+
|  LINESTRING EMPTY|             POINT (1 1)|
+------------------+------------------------+

ST_MinimumBoundingCircle

Introduction: Returns the smallest circle polygon that contains a geometry. The optional quadrantSegments parameter determines how many segments to use per quadrant and the default number of segments is 48.

Format:

ST_MinimumBoundingCircle(geom: Geometry, [Optional] quadrantSegments: Integer)

Since: v1.5.0

Example:

SELECT ST_MinimumBoundingCircle(ST_GeomFromWKT('LINESTRING(0 0, 0 1)'))

Output:

POLYGON ((0.5 0.5, 0.4997322937381828 0.4836404585891119, 0.4989294616193017 0.4672984353849285, 0.4975923633360985 0.4509914298352197, 0.4957224306869052 0.4347369038899742, 0.4933216660424395 0.4185522633027057, 0.4903926402016152 0.4024548389919359, 0.4869384896386668 0.3864618684828134, 0.4829629131445342 0.3705904774487396, 0.4784701678661044 0.3548576613727689, 0.4734650647475528 0.3392802673484192, 0.4679529633786629 0.3238749760393833, 0.4619397662556434 0.3086582838174551, 0.4554319124605879 0.2936464850978027, 0.4484363707663442 0.2788556548904993, 0.4409606321741775 0.2643016315870012, 0.4330127018922194 0.25, 0.4246010907632894 0.2359660746748161, 0.4157348061512726 0.2222148834901989, 0.4064233422958076 0.2087611515660989, 0.3966766701456176 0.1956192854956397, 0.3865052266813685 0.1828033579181773, 0.3759199037394887 0.1703270924499656, 0.3649320363489179 0.1582038489885644, 0.3535533905932738 0.1464466094067263, 0.3417961510114357 0.1350679636510822, 0.3296729075500345 0.1240800962605114, 0.3171966420818228 0.1134947733186316, 0.3043807145043603 0.1033233298543824, 0.2912388484339011 0.0935766577041924, 0.2777851165098012 0.0842651938487274, 0.264033925325184 0.0753989092367106, 0.2500000000000001 0.0669872981077807, 0.2356983684129989 0.0590393678258225, 0.2211443451095007 0.0515636292336559, 0.2063535149021975 0.0445680875394122, 0.1913417161825449 0.0380602337443566, 0.1761250239606168 0.0320470366213372, 0.1607197326515808 0.0265349352524472, 0.1451423386272312 0.0215298321338956, 0.1294095225512605 0.0170370868554659, 0.1135381315171867 0.0130615103613332, 0.0975451610080642 0.0096073597983848, 0.0814477366972944 0.0066783339575605, 0.0652630961100259 0.0042775693130948, 0.0490085701647804 0.0024076366639016, 0.0327015646150716 0.0010705383806983, 0.0163595414108882 0.0002677062618172, 0 0, -0.016359541410888 0.0002677062618172, -0.0327015646150715 0.0010705383806983, -0.0490085701647802 0.0024076366639015, -0.0652630961100257 0.0042775693130948, -0.0814477366972942 0.0066783339575605, -0.097545161008064 0.0096073597983847, -0.1135381315171866 0.0130615103613332, -0.1294095225512603 0.0170370868554658, -0.1451423386272311 0.0215298321338955, -0.1607197326515807 0.0265349352524472, -0.1761250239606166 0.0320470366213371, -0.1913417161825448 0.0380602337443566, -0.2063535149021973 0.044568087539412, -0.2211443451095006 0.0515636292336558, -0.2356983684129987 0.0590393678258224, -0.2499999999999999 0.0669872981077806, -0.264033925325184 0.0753989092367106, -0.277785116509801 0.0842651938487273, -0.291238848433901 0.0935766577041924, -0.3043807145043602 0.1033233298543823, -0.3171966420818227 0.1134947733186314, -0.3296729075500343 0.1240800962605111, -0.3417961510114356 0.1350679636510821, -0.3535533905932737 0.1464466094067262, -0.3649320363489177 0.1582038489885642, -0.3759199037394886 0.1703270924499655, -0.3865052266813683 0.1828033579181771, -0.3966766701456175 0.1956192854956396, -0.4064233422958076 0.2087611515660989, -0.4157348061512725 0.2222148834901987, -0.4246010907632894 0.235966074674816, -0.4330127018922192 0.2499999999999998, -0.4409606321741775 0.264301631587001, -0.4484363707663441 0.2788556548904991, -0.4554319124605878 0.2936464850978025, -0.4619397662556434 0.3086582838174551, -0.4679529633786628 0.3238749760393831, -0.4734650647475528 0.3392802673484191, -0.4784701678661044 0.3548576613727686, -0.4829629131445341 0.3705904774487395, -0.4869384896386668 0.3864618684828132, -0.4903926402016152 0.4024548389919357, -0.4933216660424395 0.4185522633027056, -0.4957224306869052 0.434736903889974, -0.4975923633360984 0.4509914298352196, -0.4989294616193017 0.4672984353849282, -0.4997322937381828 0.4836404585891118, -0.5 0.4999999999999999, -0.4997322937381828 0.5163595414108879, -0.4989294616193017 0.5327015646150715, -0.4975923633360985 0.5490085701647801, -0.4957224306869052 0.5652630961100257, -0.4933216660424395 0.5814477366972941, -0.4903926402016153 0.597545161008064, -0.4869384896386668 0.6135381315171865, -0.4829629131445342 0.6294095225512601, -0.4784701678661045 0.645142338627231, -0.4734650647475529 0.6607197326515806, -0.4679529633786629 0.6761250239606166, -0.4619397662556435 0.6913417161825446, -0.455431912460588 0.7063535149021972, -0.4484363707663442 0.7211443451095005, -0.4409606321741776 0.7356983684129986, -0.4330127018922194 0.7499999999999999, -0.4246010907632896 0.7640339253251838, -0.4157348061512727 0.777785116509801, -0.4064233422958078 0.7912388484339008, -0.3966766701456177 0.8043807145043602, -0.3865052266813686 0.8171966420818226, -0.3759199037394889 0.8296729075500342, -0.3649320363489179 0.8417961510114356, -0.353553390593274 0.8535533905932735, -0.3417961510114358 0.8649320363489177, -0.3296729075500345 0.8759199037394887, -0.317196642081823 0.8865052266813683, -0.3043807145043604 0.8966766701456175, -0.2912388484339011 0.9064233422958076, -0.2777851165098015 0.9157348061512725, -0.2640339253251843 0.9246010907632893, -0.2500000000000002 0.9330127018922192, -0.235698368412999 0.9409606321741775, -0.2211443451095007 0.9484363707663441, -0.2063535149021977 0.9554319124605877, -0.1913417161825452 0.9619397662556433, -0.176125023960617 0.9679529633786628, -0.1607197326515809 0.9734650647475528, -0.1451423386272312 0.9784701678661044, -0.1294095225512608 0.9829629131445341, -0.1135381315171869 0.9869384896386668, -0.0975451610080643 0.9903926402016152, -0.0814477366972945 0.9933216660424395, -0.0652630961100262 0.9957224306869051, -0.0490085701647807 0.9975923633360984, -0.0327015646150718 0.9989294616193017, -0.0163595414108883 0.9997322937381828, -0.0000000000000001 1, 0.0163595414108876 0.9997322937381828, 0.0327015646150712 0.9989294616193019, 0.04900857016478 0.9975923633360985, 0.0652630961100256 0.9957224306869052, 0.0814477366972943 0.9933216660424395, 0.0975451610080637 0.9903926402016153, 0.1135381315171863 0.9869384896386669, 0.1294095225512601 0.9829629131445342, 0.145142338627231 0.9784701678661045, 0.1607197326515807 0.9734650647475529, 0.1761250239606164 0.967952963378663, 0.1913417161825446 0.9619397662556435, 0.2063535149021972 0.955431912460588, 0.2211443451095005 0.9484363707663442, 0.2356983684129984 0.9409606321741777, 0.2499999999999997 0.9330127018922195, 0.2640339253251837 0.9246010907632896, 0.2777851165098009 0.9157348061512727, 0.291238848433901 0.9064233422958077, 0.3043807145043599 0.8966766701456179, 0.3171966420818225 0.8865052266813687, 0.3296729075500342 0.8759199037394889, 0.3417961510114355 0.8649320363489179, 0.3535533905932737 0.8535533905932738, 0.3649320363489175 0.841796151011436, 0.3759199037394885 0.8296729075500346, 0.3865052266813683 0.817196642081823, 0.3966766701456175 0.8043807145043604, 0.4064233422958076 0.7912388484339011, 0.4157348061512723 0.7777851165098015, 0.4246010907632893 0.7640339253251842, 0.4330127018922192 0.7500000000000002, 0.4409606321741774 0.735698368412999, 0.4484363707663439 0.7211443451095011, 0.4554319124605877 0.7063535149021978, 0.4619397662556433 0.6913417161825453, 0.4679529633786628 0.676125023960617, 0.4734650647475528 0.6607197326515809, 0.4784701678661043 0.6451423386272317, 0.482962913144534 0.6294095225512608, 0.4869384896386668 0.613538131517187, 0.4903926402016152 0.5975451610080643, 0.4933216660424395 0.5814477366972945, 0.4957224306869051 0.5652630961100262, 0.4975923633360984 0.5490085701647807, 0.4989294616193017 0.5327015646150718, 0.4997322937381828 0.5163595414108882, 0.5 0.5))

ST_MinimumBoundingRadius

Introduction: Returns a struct containing the center point and radius of the smallest circle that contains a geometry.

Format: ST_MinimumBoundingRadius(geom: Geometry)

Since: v1.5.0

Example:

SELECT ST_MinimumBoundingRadius(ST_GeomFromText('POLYGON((1 1,0 0, -1 1, 1 1))'))

Output:

{POINT (0 1), 1.0}

ST_Multi

Introduction: Returns a MultiGeometry object based on the geometry input. ST_Multi is basically an alias for ST_Collect with one geometry.

Format: ST_Multi(geom: Geometry)

Since: v1.5.0

Example:

SELECT ST_Multi(ST_GeomFromText('POINT(1 1)'))

Output:

MULTIPOINT (1 1)

ST_Normalize

Introduction: Returns the input geometry in its normalized form.

Format: ST_Normalize(geom: Geometry)

Since: v1.3.0

Example:

SELECT ST_AsEWKT(ST_Normalize(ST_GeomFromWKT('POLYGON((0 1, 1 1, 1 0, 0 0, 0 1))')))

Result:

POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))

ST_NPoints

Introduction: Returns the number of points of the geometry

Format: ST_NPoints (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_NPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'))

Output:

4

ST_NDims

Introduction: Returns the coordinate dimension of the geometry.

Format: ST_NDims(geom: Geometry)

Since: v1.3.1

Example with z coordinate:

SELECT ST_NDims(ST_GeomFromEWKT('POINT(1 1 2)'))

Output:

3

Example with x,y coordinate:

SELECT ST_NDims(ST_GeomFromText('POINT(1 1)'))

Output:

2

ST_NRings

Introduction: Returns the number of rings in a Polygon or MultiPolygon. Contrary to ST_NumInteriorRings, this function also takes into account the number of exterior rings.

This function returns 0 for an empty Polygon or MultiPolygon. If the geometry is not a Polygon or MultiPolygon, an IllegalArgument Exception is thrown.

Format: ST_NRings(geom: Geometry)

Since: v1.4.1

Examples:

Input: POLYGON ((1 0, 1 1, 2 1, 2 0, 1 0))

Output: 1

Input: 'MULTIPOLYGON (((1 0, 1 6, 6 6, 6 0, 1 0), (2 1, 2 2, 3 2, 3 1, 2 1)), ((10 0, 10 6, 16 6, 16 0, 10 0), (12 1, 12 2, 13 2, 13 1, 12 1)))'

Output: 4

Input: 'POLYGON EMPTY'

Output: 0

Input: 'LINESTRING (1 0, 1 1, 2 1)'

Output: Unsupported geometry type: LineString, only Polygon or MultiPolygon geometries are supported.

ST_NumGeometries

Introduction: Returns the number of Geometries. If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries, for single geometries will return 1.

Format: ST_NumGeometries (A: Geometry)

Since: v1.3.0

Example

SELECT ST_NumGeometries(ST_GeomFromWKT('LINESTRING (-29 -27, -30 -29.7, -45 -33)'))

Output:

1

ST_NumInteriorRings

Introduction: Returns number of interior rings of polygon geometries.

Format: ST_NumInteriorRings(geom: Geometry)

Since: v1.3.0

Example:

SELECT ST_NumInteriorRings(ST_GeomFromText('POLYGON ((0 0, 0 5, 5 5, 5 0, 0 0), (1 1, 2 1, 2 2, 1 2, 1 1))'))

Output:

1

ST_NumPoints

Introduction: Returns number of points in a LineString.

Note

If any other geometry is provided as an argument, an IllegalArgumentException is thrown. Example: SELECT ST_NumPoints(ST_GeomFromWKT('MULTIPOINT ((0 0), (1 1), (0 1), (2 2))'))

Output: IllegalArgumentException: Unsupported geometry type: MultiPoint, only LineString geometry is supported.

Format: ST_NumPoints(geom: Geometry)

Since: v1.4.1

Example:

SELECT ST_NumPoints(ST_GeomFromText('LINESTRING(1 2, 1 3)'))

Output:

2

ST_PointN

Introduction: Return the Nth point in a single linestring or circular linestring in the geometry. Negative values are counted backwards from the end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the geometry.

Format: ST_PointN(A: Geometry, B: Integer)

Since: v1.2.1

Examples:

SELECT ST_PointN(df.geometry, 2)
FROM df

Input: LINESTRING(0 0, 1 2, 2 4, 3 6), 2

Output: POINT (1 2)

Input: LINESTRING(0 0, 1 2, 2 4, 3 6), -2

Output: POINT (2 4)

Input: CIRCULARSTRING(1 1, 1 2, 2 4, 3 6, 1 2, 1 1), -1

Output: POINT (1 1)

ST_PointOnSurface

Introduction: Returns a POINT guaranteed to lie on the surface.

Format: ST_PointOnSurface(A: Geometry)

Since: v1.2.1

Examples:

SELECT ST_PointOnSurface(df.geometry)
FROM df
  1. Input: POINT (0 5)

Output: POINT (0 5)

  1. Input: LINESTRING(0 5, 0 10)

Output: POINT (0 5)

  1. Input: POLYGON((0 0, 0 5, 5 5, 5 0, 0 0))

Output: POINT (2.5 2.5)

  1. Input: LINESTRING(0 5 1, 0 0 1, 0 10 2)

Output: POINT Z(0 0 1)

ST_Polygon

Introduction: Function to create a polygon built from the given LineString and sets the spatial reference system from the srid

Format: ST_Polygon(geom: Geometry, srid: Integer)

Since: v1.5.0

Example:

SELECT ST_AsText( ST_Polygon(ST_GeomFromEWKT('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29 1)'), 4326) );

Output:

POLYGON((75 29 1, 77 29 2, 77 29 3, 75 29 1))

ST_ReducePrecision

Introduction: Reduce the decimals places in the coordinates of the geometry to the given number of decimal places. The last decimal place will be rounded.

Format: ST_ReducePrecision (A: Geometry, B: Integer)

Since: v1.5.0

Example:

SELECT ST_ReducePrecision(ST_GeomFromWKT('Point(0.1234567890123456789 0.1234567890123456789)')
    , 9)
The new coordinates will only have 9 decimal places.

Output:

POINT (0.123456789 0.123456789)

ST_Reverse

Introduction: Return the geometry with vertex order reversed

Format: ST_Reverse (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_Reverse(ST_GeomFromWKT('LINESTRING(0 0, 1 2, 2 4, 3 6)'))

Output:

LINESTRING (3 6, 2 4, 1 2, 0 0)

ST_RemovePoint

Introduction: Return Linestring with removed point at given index, position can be omitted and then last one will be removed.

Format:

ST_RemovePoint(geom: Geometry, position: Integer)

ST_RemovePoint(geom: Geometry)

Since: v1.3.0

Example:

SELECT ST_RemovePoint(ST_GeomFromText("LINESTRING(0 0, 1 1, 1 0)"), 1)

Output:

LINESTRING(0 0, 1 0)

ST_S2CellIDs

Introduction: Cover the geometry with Google S2 Cells, return the corresponding cell IDs with the given level. The level indicates the size of cells. With a bigger level, the cells will be smaller, the coverage will be more accurate, but the result size will be exponentially increasing.

Format: ST_S2CellIDs(geom: Geometry, level: Integer)

Since: v1.4.0

Example:

SELECT ST_S2CellIDs(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'), 6)

Output:

[1159395429071192064, 1159958379024613376, 1160521328978034688, 1161084278931456000, 1170091478186196992, 1170654428139618304]

ST_S2ToGeom

Introduction: Returns an array of Polygons for the corresponding S2 cell IDs.

Hint

To convert a Polygon array to MultiPolygon, use ST_Collect. However, the result may be an invalid geometry. Apply ST_MakeValid to the ST_Collect output to ensure a valid MultiPolygon.

An alternative approach to consolidate a Polygon array into a Polygon/MultiPolygon, use the ST_Union function.

Format: ST_S2ToGeom(cellIds: Array[Long])

Since: v1.6.0

SQL Example:

SELECT ST_S2ToGeom(array(11540474045136890))

Output:

[POLYGON ((-36.609392788630245 -38.169532607255846, -36.609392706252954 -38.169532607255846, -36.609392706252954 -38.169532507473015, -36.609392788630245 -38.169532507473015, -36.609392788630245 -38.169532607255846))]

ST_SetPoint

Introduction: Replace Nth point of linestring with given point. Index is 0-based. Negative index are counted backwards, e.g., -1 is last point.

Format: ST_SetPoint (linestring: Geometry, index: Integer, point: Geometry)

Since: v1.3.0

Example:

SELECT ST_SetPoint(ST_GeomFromText('LINESTRING (0 0, 0 1, 1 1)'), 2, ST_GeomFromText('POINT (1 0)'))

Output:

LINESTRING (0 0, 0 1, 1 0)

ST_SetSRID

Introduction: Sets the spatial reference system identifier (SRID) of the geometry.

Format: ST_SetSRID (A: Geometry, srid: Integer)

Since: v1.3.0

Example:

SELECT ST_AsEWKT(ST_SetSRID(ST_GeomFromWKT('POLYGON((1 1, 8 1, 8 8, 1 8, 1 1))'), 3021))

Output:

SRID=3021;POLYGON ((1 1, 8 1, 8 8, 1 8, 1 1))

ST_ShiftLongitude

Introduction: Modifies longitude coordinates in geometries, shifting values between -180..0 degrees to 180..360 degrees and vice versa. This is useful for normalizing data across the International Date Line and standardizing coordinate ranges for visualization and spheroidal calculations.

Note

This function is only applicable to geometries that use lon/lat coordinate systems.

Format: ST_ShiftLongitude (geom: geometry)

Since: v1.6.0

SQL example:

SELECT ST_ShiftLongitude(ST_GeomFromText('LINESTRING(177 10, 179 10, -179 10, -177 10)'))

Output:

LINESTRING(177 10, 179 10, 181 10, 183 10)

ST_SRID

Introduction: Return the spatial reference system identifier (SRID) of the geometry.

Format: ST_SRID (A: Geometry)

Since: v1.3.0

Example:

SELECT ST_SRID(ST_SetSRID(ST_GeomFromWKT('POLYGON((1 1, 8 1, 8 8, 1 8, 1 1))'), 3021))

Output:

3021

ST_SimplifyPreserveTopology

Introduction: Simplifies a geometry and ensures that the result is a valid geometry having the same dimension and number of components as the input, and with the components having the same topological relationship.

Since: v1.5.0

Format: ST_SimplifyPreserveTopology (A: Geometry, distanceTolerance: Double)

Example:

SELECT ST_SimplifyPreserveTopology(ST_GeomFromText('POLYGON((8 25, 28 22, 28 20, 15 11, 33 3, 56 30, 46 33,46 34, 47 44, 35 36, 45 33, 43 19, 29 21, 29 22,35 26, 24 39, 8 25))'), 10)

Output:

POLYGON ((8 25, 28 22, 15 11, 33 3, 56 30, 47 44, 35 36, 43 19, 24 39, 8 25))

ST_Snap

Introduction: Snaps the vertices and segments of the input geometry to reference geometry within the specified tolerance distance. The tolerance parameter controls the maximum snap distance.

If the minimum distance between the geometries exceeds the tolerance, the input geometry is returned unmodified. Adjusting the tolerance value allows tuning which vertices should snap to the reference and which remain untouched.

Since: v1.6.0

Format: ST_Snap(input: Geometry, reference: Geometry, tolerance: double)

Input geometry:

SQL Example:

SELECT ST_Snap(
        ST_GeomFromWKT('POLYGON ((236877.58 -6.61, 236878.29 -8.35, 236879.98 -8.33, 236879.72 -7.63, 236880.35 -6.62, 236877.58 -6.61), (236878.45 -7.01, 236878.43 -7.52, 236879.29 -7.50, 236878.63 -7.22, 236878.76 -6.89, 236878.45 -7.01))') as poly,
        ST_GeomFromWKT('LINESTRING (236880.53 -8.22, 236881.15 -7.68, 236880.69 -6.81)') as line,
       ST_Distance(poly, line) * 1.01
       )

Output:

POLYGON ((236877.58 -6.61, 236878.29 -8.35, 236879.98 -8.33, 236879.72 -7.63, 236880.69 -6.81, 236877.58 -6.61), (236878.45 -7.01, 236878.43 -7.52, 236879.29 -7.5, 236878.63 -7.22, 236878.76 -6.89, 236878.45 -7.01))

ST_StartPoint

Introduction: Returns first point of given linestring.

Format: ST_StartPoint(geom: Geometry)

Since: v1.5.0

Example:

SELECT ST_StartPoint(ST_GeomFromText('LINESTRING(100 150,50 60, 70 80, 160 170)'))

Output:

POINT(100 150)

ST_SubDivide

Introduction: Returns list of geometries divided based of given maximum number of vertices.

Format: ST_SubDivide(geom: Geometry, maxVertices: Integer)

Since: v1.5.0

Example:

SELECT ST_SubDivide(ST_GeomFromText("POLYGON((35 10, 45 45, 15 40, 10 20, 35 10), (20 30, 35 35, 30 20, 20 30))"), 5)

Output:

[
    POLYGON((37.857142857142854 20, 35 10, 10 20, 37.857142857142854 20)),
    POLYGON((15 20, 10 20, 15 40, 15 20)),
    POLYGON((20 20, 15 20, 15 30, 20 30, 20 20)),
    POLYGON((26.428571428571427 20, 20 20, 20 30, 26.4285714 23.5714285, 26.4285714 20)),
    POLYGON((15 30, 15 40, 20 40, 20 30, 15 30)),
    POLYGON((20 40, 26.4285714 40, 26.4285714 32.1428571, 20 30, 20 40)),
    POLYGON((37.8571428 20, 30 20, 34.0476190 32.1428571, 37.8571428 32.1428571, 37.8571428 20)),
    POLYGON((34.0476190 34.6825396, 26.4285714 32.1428571, 26.4285714 40, 34.0476190 40, 34.0476190 34.6825396)),
    POLYGON((34.0476190 32.1428571, 35 35, 37.8571428 35, 37.8571428 32.1428571, 34.0476190 32.1428571)),
    POLYGON((35 35, 34.0476190 34.6825396, 34.0476190 35, 35 35)),
    POLYGON((34.0476190 35, 34.0476190 40, 37.8571428 40, 37.8571428 35, 34.0476190 35)),
    POLYGON((30 20, 26.4285714 20, 26.4285714 23.5714285, 30 20)),
    POLYGON((15 40, 37.8571428 43.8095238, 37.8571428 40, 15 40)),
    POLYGON((45 45, 37.8571428 20, 37.8571428 43.8095238, 45 45))
]

Example:

SELECT ST_SubDivide(ST_GeomFromText("LINESTRING(0 0, 85 85, 100 100, 120 120, 21 21, 10 10, 5 5)"), 5)

Output:

[
    LINESTRING(0 0, 5 5)
    LINESTRING(5 5, 10 10)
    LINESTRING(10 10, 21 21)
    LINESTRING(21 21, 60 60)
    LINESTRING(60 60, 85 85)
    LINESTRING(85 85, 100 100)
    LINESTRING(100 100, 120 120)
]

ST_SymDifference

Introduction: Return the symmetrical difference between geometry A and B (return parts of geometries which are in either of the sets, but not in their intersection)

Format: ST_SymDifference (A: Geometry, B: Geometry)

Since: v1.5.0

Example:

SELECT ST_SymDifference(ST_GeomFromWKT('POLYGON ((-3 -3, 3 -3, 3 3, -3 3, -3 -3))'), ST_GeomFromWKT('POLYGON ((-2 -3, 4 -3, 4 3, -2 3, -2 -3))'))

Output:

MULTIPOLYGON (((-2 -3, -3 -3, -3 3, -2 3, -2 -3)), ((3 -3, 3 3, 4 3, 4 -3, 3 -3)))

ST_Transform

Introduction:

Transform the Spatial Reference System / Coordinate Reference System of A, from SourceCRS to TargetCRS. For SourceCRS and TargetCRS, WKT format is also available since v1.3.1.

Lon/Lat Order in the input geometry

If the input geometry is in lat/lon order, it might throw an error such as too close to pole, latitude or longitude exceeded limits, or give unexpected results. You need to make sure that the input geometry is in lon/lat order. If the input geometry is in lat/lon order, you can use ST_FlipCoordinates to swap X and Y.

Lon/Lat Order in the source and target CRS

Sedona will force the source and target CRS to be in lon/lat order. If the source CRS or target CRS is in lat/lon order, it will be swapped to lon/lat order.

CRS code

The CRS code is the code of the CRS in the official EPSG database (https://epsg.org/) in the format of EPSG:XXXX. A community tool EPSG.io can help you quick identify a CRS code. For example, the code of WGS84 is EPSG:4326.

WKT format

You can also use OGC WKT v1 format to specify the source CRS and target CRS. An example OGC WKT v1 CRS of EPGS:3857 is as follows:

PROJCS["WGS 84 / Pseudo-Mercator",
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.0174532925199433,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4326"]],
    PROJECTION["Mercator_1SP"],
    PARAMETER["central_meridian",0],
    PARAMETER["scale_factor",1],
    PARAMETER["false_easting",0],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]],
    AXIS["Easting",EAST],
    AXIS["Northing",NORTH],
    EXTENSION["PROJ4","+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs"],
    AUTHORITY["EPSG","3857"]]

Note

By default, this function uses lon/lat order since v1.5.0. Before, it used lat/lon order.

Note

By default, ST_Transform follows the lenient mode which tries to fix issues by itself. You can append a boolean value at the end to enable the strict mode. In strict mode, ST_Transform will throw an error if it finds any issue.

Format:

ST_Transform (A: Geometry, SourceCRS: String, TargetCRS: String, [Optional] lenientMode: Boolean)

Since: v1.2.0

Example:

SELECT ST_AsText(ST_Transform(ST_GeomFromText('POLYGON((170 50,170 72,-130 72,-130 50,170 50))'),'EPSG:4326', 'EPSG:32649'))
SELECT ST_AsText(ST_Transform(ST_GeomFromText('POLYGON((170 50,170 72,-130 72,-130 50,170 50))'),'EPSG:4326', 'EPSG:32649', false))

Output:

POLYGON ((8766047.980342899 17809098.336766362, 5122546.516721856 18580261.912528664, 3240775.0740796793 -13688660.50985159, 4556241.924514083 -12463044.21488129, 8766047.980342899 17809098.336766362))

ST_Translate

Introduction: Returns the input geometry with its X, Y and Z coordinates (if present in the geometry) translated by deltaX, deltaY and deltaZ (if specified)

If the geometry is 2D, and a deltaZ parameter is specified, no change is done to the Z coordinate of the geometry and the resultant geometry is also 2D.

If the geometry is empty, no change is done to it.

If the given geometry contains sub-geometries (GEOMETRY COLLECTION, MULTI POLYGON/LINE/POINT), all underlying geometries are individually translated.

Format:

ST_Translate(geometry: Geometry, deltaX: Double, deltaY: Double, deltaZ: Double)

Since: v1.4.1

Example:

SELECT ST_Translate(ST_GeomFromText('GEOMETRYCOLLECTION(MULTIPOLYGON(((3 2,3 3,4 3,4 2,3 2)),((3 4,5 6,5 7,3 4))), POINT(1 1 1), LINESTRING EMPTY)'), 2, 2, 3)

Output:

GEOMETRYCOLLECTION (MULTIPOLYGON (((5 4, 5 5, 6 5, 6 4, 5 4)), ((5 6, 7 8, 7 9, 5 6))), POINT (3 3), LINESTRING EMPTY)

Example:

SELECT ST_Translate(ST_GeomFromText('POINT(-71.01 42.37)'),1,2)

Output:

POINT (-70.01 44.37)

ST_Union

Introduction:

Variant 1: Return the union of geometry A and B.

Variant 2: This function accepts an array of Geometry objects and returns the geometric union of all geometries in the input array. If the polygons within the input array do not share common boundaries, the ST_Union result will be a MultiPolygon geometry.

Format:

ST_Union (A: Geometry, B: Geometry)

ST_Union (geoms: Array(Geometry))

Since: v1.6.0

SQL Example

SELECT ST_Union(ST_GeomFromWKT('POLYGON ((-3 -3, 3 -3, 3 3, -3 3, -3 -3))'), ST_GeomFromWKT('POLYGON ((1 -2, 5 0, 1 2, 1 -2))'))

Output:

POLYGON ((3 -1, 3 -3, -3 -3, -3 3, 3 3, 3 1, 5 0, 3 -1))

SQL Example

SELECT ST_Union(
    Array(
        ST_GeomFromWKT('POLYGON ((-3 -3, 3 -3, 3 3, -3 3, -3 -3))'),
        ST_GeomFromWKT('POLYGON ((-2 1, 2 1, 2 4, -2 4, -2 1))')
    )
)

Output:

POLYGON ((2 3, 3 3, 3 -3, -3 -3, -3 3, -2 3, -2 4, 2 4, 2 3))

ST_VoronoiPolygons

Introduction: Returns a two-dimensional Voronoi diagram from the vertices of the supplied geometry. The result is a GeometryCollection of Polygons that covers an envelope larger than the extent of the input vertices. Returns null if input geometry is null. Returns an empty geometry collection if the input geometry contains only one vertex. Returns an empty geometry collection if the extend_to envelope has zero area.

Format: ST_VoronoiPolygons(g1: Geometry, tolerance: Double, extend_to: Geometry)

Optional parameters:

tolerance : The distance within which vertices will be considered equivalent. Robustness of the algorithm can be improved by supplying a nonzero tolerance distance. (default = 0.0)

extend_to : If a geometry is supplied as the "extend_to" parameter, the diagram will be extended to cover the envelope of the "extend_to" geometry, unless that envelope is smaller than the default envelope (default = NULL. By default, we extend the bounding box of the diagram by the max between bounding box's height and bounding box's width).

Since: v1.5.0

Example:

SELECT st_astext(ST_VoronoiPolygons(ST_GeomFromText('MULTIPOINT ((0 0), (1 1))')));

Output:

GEOMETRYCOLLECTION(POLYGON((-1 2,2 -1,-1 -1,-1 2)),POLYGON((-1 2,2 2,2 -1,-1 2)))

ST_X

Introduction: Returns X Coordinate of given Point, null otherwise.

Format: ST_X(pointA: Point)

Since: v1.3.0

Example:

SELECT ST_X(ST_POINT(0.0 25.0))

Output:

0.0

ST_XMax

Introduction: Returns the maximum X coordinate of a geometry

Format: ST_XMax (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_XMax(ST_GeomFromText('POLYGON ((-1 -11, 0 10, 1 11, 2 12, -1 -11))'))

Output:

2

ST_XMin

Introduction: Returns the minimum X coordinate of a geometry

Format: ST_XMin (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_XMin(ST_GeomFromText('POLYGON ((-1 -11, 0 10, 1 11, 2 12, -1 -11))'))

Output:

-1

ST_Y

Introduction: Returns Y Coordinate of given Point, null otherwise.

Format: ST_Y(pointA: Point)

Since: v1.3.0

Example:

SELECT ST_Y(ST_POINT(0.0 25.0))

Output:

25.0

ST_YMax

Introduction: Return the minimum Y coordinate of A

Format: ST_YMax (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_YMax(ST_GeomFromText('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))'))

Output :

2

ST_YMin

Introduction: Return the minimum Y coordinate of A

Format: ST_Y_Min (A: Geometry)

Since: v1.2.1

Example:

SELECT ST_YMin(ST_GeomFromText('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))'))

Output:

0

ST_Z

Introduction: Returns Z Coordinate of given Point, null otherwise.

Format: ST_Z(pointA: Point)

Since: v1.3.0

Example:

SELECT ST_Z(ST_POINT(0.0 25.0 11.0))

Output:

11.0

ST_ZMax

Introduction: Returns Z maxima of the given geometry or null if there is no Z coordinate.

Format: ST_ZMax(geom: Geometry)

Since: v1.3.1

Example:

SELECT ST_ZMax(ST_GeomFromText('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))'))

Output:

1.0

ST_ZMin

Introduction: Returns Z minima of the given geometry or null if there is no Z coordinate.

Format: ST_ZMin(geom: Geometry)

Since: v1.3.1

Example:

SELECT ST_ZMin(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'))

Output:

4.0