Work with GeoPandas and Shapely¶
Danger
Sedona Python currently only works with Shapely 1.x. If you use GeoPandas, please use <= GeoPandas 0.11.1
. GeoPandas > 0.11.1 will automatically install Shapely 2.0. If you use Shapely, please use <= 1.8.4
.
Interoperate with GeoPandas¶
Sedona Python has implemented serializers and deserializers which allows to convert Sedona Geometry objects into Shapely BaseGeometry objects. Based on that it is possible to load the data with geopandas from file (look at Fiona possible drivers) and create Spark DataFrame based on GeoDataFrame object.
From GeoPandas to Sedona DataFrame¶
Loading the data from shapefile using geopandas read_file method and create Spark DataFrame based on GeoDataFrame:
import geopandas as gpd
from sedona.spark import *
config = SedonaContext.builder().\
getOrCreate()
sedona = SedonaContext.create(config)
gdf = gpd.read_file("gis_osm_pois_free_1.shp")
sedona.createDataFrame(
gdf
).show()
This query will show the following outputs:
+---------+----+-----------+--------------------+--------------------+
| osm_id|code| fclass| name| geometry|
+---------+----+-----------+--------------------+--------------------+
| 26860257|2422| camp_site| de Kroon|POINT (15.3393145...|
| 26860294|2406| chalet| Leśne Ustronie|POINT (14.8709625...|
| 29947493|2402| motel| null|POINT (15.0946636...|
| 29947498|2602| atm| null|POINT (15.0732014...|
| 29947499|2401| hotel| null|POINT (15.0696777...|
| 29947505|2401| hotel| null|POINT (15.0155749...|
+---------+----+-----------+--------------------+--------------------+
From Sedona DataFrame to GeoPandas¶
Reading data with Spark and converting to GeoPandas
import geopandas as gpd
from sedona.spark import *
config = SedonaContext.builder().
getOrCreate()
sedona = SedonaContext.create(config)
counties = sedona.\
read.\
option("delimiter", "|").\
option("header", "true").\
csv("counties.csv")
counties.createOrReplaceTempView("county")
counties_geom = sedona.sql(
"SELECT *, st_geomFromWKT(geom) as geometry from county"
)
df = counties_geom.toPandas()
gdf = gpd.GeoDataFrame(df, geometry="geometry")
gdf.plot(
figsize=(10, 8),
column="value",
legend=True,
cmap='YlOrBr',
scheme='quantiles',
edgecolor='lightgray'
)
Interoperate with shapely objects¶
Supported Shapely objects¶
shapely object | Available |
---|---|
Point | |
MultiPoint | |
LineString | |
MultiLinestring | |
Polygon | |
MultiPolygon |
To create Spark DataFrame based on mentioned Geometry types, please use GeometryType from sedona.sql.types module. Converting works for list or tuple with shapely objects.
Schema for target table with integer id and geometry type can be defined as follow:
from pyspark.sql.types import IntegerType, StructField, StructType
from sedona.spark import *
schema = StructType(
[
StructField("id", IntegerType(), False),
StructField("geom", GeometryType(), False)
]
)
Also Spark DataFrame with geometry type can be converted to list of shapely objects with collect method.
Point example¶
from shapely.geometry import Point
data = [
[1, Point(21.0, 52.0)],
[1, Point(23.0, 42.0)],
[1, Point(26.0, 32.0)]
]
gdf = sedona.createDataFrame(
data,
schema
)
gdf.show()
+---+-------------+
| id| geom|
+---+-------------+
| 1|POINT (21 52)|
| 1|POINT (23 42)|
| 1|POINT (26 32)|
+---+-------------+
gdf.printSchema()
root
|-- id: integer (nullable = false)
|-- geom: geometry (nullable = false)
MultiPoint example¶
from shapely.geometry import MultiPoint
data = [
[1, MultiPoint([[19.511463, 51.765158], [19.446408, 51.779752]])]
]
gdf = sedona.createDataFrame(
data,
schema
).show(1, False)
+---+---------------------------------------------------------+
|id |geom |
+---+---------------------------------------------------------+
|1 |MULTIPOINT ((19.511463 51.765158), (19.446408 51.779752))|
+---+---------------------------------------------------------+
LineString example¶
from shapely.geometry import LineString
line = [(40, 40), (30, 30), (40, 20), (30, 10)]
data = [
[1, LineString(line)]
]
gdf = sedona.createDataFrame(
data,
schema
)
gdf.show(1, False)
+---+--------------------------------+
|id |geom |
+---+--------------------------------+
|1 |LINESTRING (10 10, 20 20, 10 40)|
+---+--------------------------------+
MultiLineString example¶
from shapely.geometry import MultiLineString
line1 = [(10, 10), (20, 20), (10, 40)]
line2 = [(40, 40), (30, 30), (40, 20), (30, 10)]
data = [
[1, MultiLineString([line1, line2])]
]
gdf = sedona.createDataFrame(
data,
schema
)
gdf.show(1, False)
+---+---------------------------------------------------------------------+
|id |geom |
+---+---------------------------------------------------------------------+
|1 |MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))|
+---+---------------------------------------------------------------------+
Polygon example¶
from shapely.geometry import Polygon
polygon = Polygon(
[
[19.51121, 51.76426],
[19.51056, 51.76583],
[19.51216, 51.76599],
[19.51280, 51.76448],
[19.51121, 51.76426]
]
)
data = [
[1, polygon]
]
gdf = sedona.createDataFrame(
data,
schema
)
gdf.show(1, False)
+---+--------------------------------------------------------------------------------------------------------+
|id |geom |
+---+--------------------------------------------------------------------------------------------------------+
|1 |POLYGON ((19.51121 51.76426, 19.51056 51.76583, 19.51216 51.76599, 19.5128 51.76448, 19.51121 51.76426))|
+---+--------------------------------------------------------------------------------------------------------+
MultiPolygon example¶
from shapely.geometry import MultiPolygon
exterior_p1 = [(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)]
interior_p1 = [(1, 1), (1, 1.5), (1.5, 1.5), (1.5, 1), (1, 1)]
exterior_p2 = [(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]
polygons = [
Polygon(exterior_p1, [interior_p1]),
Polygon(exterior_p2)
]
data = [
[1, MultiPolygon(polygons)]
]
gdf = sedona.createDataFrame(
data,
schema
)
gdf.show(1, False)
+---+----------------------------------------------------------------------------------------------------------+
|id |geom |
+---+----------------------------------------------------------------------------------------------------------+
|1 |MULTIPOLYGON (((0 0, 0 2, 2 2, 2 0, 0 0), (1 1, 1.5 1, 1.5 1.5, 1 1.5, 1 1)), ((0 0, 0 1, 1 1, 1 0, 0 0)))|
+---+----------------------------------------------------------------------------------------------------------+