Introduction¶
Function list¶
SedonaSQL supports SQL/MM Part3 Spatial SQL Standard. It includes four kinds of SQL operators as follows. All these operators can be directly called through:
var myDataFrame = sparkSession.sql("YOUR_SQL")
Alternatively, expr
and selectExpr
can be used:
myDataFrame.withColumn("geometry", expr("ST_*")).selectExpr("ST_*")
- Constructor: Construct a Geometry given an input string or coordinates
- Example: ST_GeomFromWKT (string). Create a Geometry from a WKT String.
- Documentation: Here
- Function: Execute a function on the given column or columns
- Example: ST_Distance (A, B). Given two Geometry A and B, return the Euclidean distance of A and B.
- Documentation: Here
- Aggregate function: Return the aggregated value on the given column
- Example: ST_Envelope_Aggr (Geometry column). Given a Geometry column, calculate the entire envelope boundary of this column.
- Documentation: Here
- Predicate: Execute a logic judgement on the given columns and return true or false
- Example: ST_Contains (A, B). Check if A fully contains B. Return "True" if yes, else return "False".
- Documentation: Here
Sedona also provides an Adapter to convert SpatialRDD <-> DataFrame. Please read Adapter Scaladoc
SedonaSQL supports SparkSQL query optimizer, documentation is Here
Quick start¶
The detailed explanation is here Write a SQL/DataFrame application.
- Add Sedona-core and Sedona-SQL into your project POM.xml or build.sbt
- Declare your Spark Session
sparkSession = SparkSession.builder(). config("spark.serializer","org.apache.spark.serializer.KryoSerializer"). config("spark.kryo.registrator", "org.apache.sedona.core.serde.SedonaKryoRegistrator"). master("local[*]").appName("mySedonaSQLdemo").getOrCreate()
- Add the following line after your SparkSession declaration:
import org.apache.sedona.sql.utils.SedonaSQLRegistrator SedonaSQLRegistrator.registerAll(sparkSession)
Last update:
September 24, 2021 03:54:31