Skip to content

SedonaSQL query optimizer

Sedona Spatial operators fully supports Apache SparkSQL query optimizer. It has the following query optimization features:

  • Automatically optimizes range join query and distance join query.
  • Automatically performs predicate pushdown.

Range join

Introduction: Find geometries from A and geometries from B such that each geometry pair satisfies a certain predicate. Most predicates supported by SedonaSQL can trigger a range join.

Spark SQL Example:

SELECT *
FROM polygondf, pointdf
WHERE ST_Contains(polygondf.polygonshape,pointdf.pointshape)
SELECT *
FROM polygondf, pointdf
WHERE ST_Intersects(polygondf.polygonshape,pointdf.pointshape)

SELECT *
FROM pointdf, polygondf
WHERE ST_Within(pointdf.pointshape, polygondf.polygonshape)
Spark SQL Physical plan:
== Physical Plan ==
RangeJoin polygonshape#20: geometry, pointshape#43: geometry, false
:- Project [st_polygonfromenvelope(cast(_c0#0 as decimal(24,20)), cast(_c1#1 as decimal(24,20)), cast(_c2#2 as decimal(24,20)), cast(_c3#3 as decimal(24,20)), mypolygonid) AS polygonshape#20]
:  +- *FileScan csv
+- Project [st_point(cast(_c0#31 as decimal(24,20)), cast(_c1#32 as decimal(24,20)), myPointId) AS pointshape#43]
   +- *FileScan csv

Note

All join queries in SedonaSQL are inner joins

Distance join

Introduction: Find geometries from A and geometries from B such that the internal Euclidean distance of each geometry pair is less or equal than a certain distance

Spark SQL Example:

Only consider fully within a certain distance

SELECT *
FROM pointdf1, pointdf2
WHERE ST_Distance(pointdf1.pointshape1,pointdf2.pointshape2) < 2

Consider intersects within a certain distance

SELECT *
FROM pointdf1, pointdf2
WHERE ST_Distance(pointdf1.pointshape1,pointdf2.pointshape2) <= 2

Spark SQL Physical plan:

== Physical Plan ==
DistanceJoin pointshape1#12: geometry, pointshape2#33: geometry, 2.0, true
:- Project [st_point(cast(_c0#0 as decimal(24,20)), cast(_c1#1 as decimal(24,20)), myPointId) AS pointshape1#12]
:  +- *FileScan csv
+- Project [st_point(cast(_c0#21 as decimal(24,20)), cast(_c1#22 as decimal(24,20)), myPointId) AS pointshape2#33]
   +- *FileScan csv

Warning

Sedona doesn't control the distance's unit (degree or meter). It is same with the geometry. To change the geometry's unit, please transform the coordinate reference system. See ST_Transform.

Broadcast join

Introduction: Perform a range join or distance join but broadcast one of the sides of the join. This maintains the partitioning of the non-broadcast side and doesn't require a shuffle. Sedona uses broadcast join only if the correct side has a broadcast hint. The supported join type - broadcast side combinations are * Inner - either side, preferring to broadcast left if both sides have the hint * Left semi - broadcast right * Left anti - broadcast right * Left outer - broadcast right * Right outer - broadcast left

pointDf.alias("pointDf").join(broadcast(polygonDf).alias("polygonDf"), expr("ST_Contains(polygonDf.polygonshape, pointDf.pointshape)"))

Spark SQL Physical plan:

== Physical Plan ==
BroadcastIndexJoin pointshape#52: geometry, BuildRight, BuildRight, false ST_Contains(polygonshape#30, pointshape#52)
:- Project [st_point(cast(_c0#48 as decimal(24,20)), cast(_c1#49 as decimal(24,20))) AS pointshape#52]
:  +- FileScan csv
+- SpatialIndex polygonshape#30: geometry, QUADTREE, [id=#62]
   +- Project [st_polygonfromenvelope(cast(_c0#22 as decimal(24,20)), cast(_c1#23 as decimal(24,20)), cast(_c2#24 as decimal(24,20)), cast(_c3#25 as decimal(24,20))) AS polygonshape#30]
      +- FileScan csv

This also works for distance joins:

pointDf1.alias("pointDf1").join(broadcast(pointDf2).alias("pointDf2"), expr("ST_Distance(pointDf1.pointshape, pointDf2.pointshape) <= 2"))

Spark SQL Physical plan:

== Physical Plan ==
BroadcastIndexJoin pointshape#52: geometry, BuildRight, BuildLeft, true, 2.0 ST_Distance(pointshape#52, pointshape#415) <= 2.0
:- Project [st_point(cast(_c0#48 as decimal(24,20)), cast(_c1#49 as decimal(24,20))) AS pointshape#52]
:  +- FileScan csv
+- SpatialIndex pointshape#415: geometry, QUADTREE, [id=#1068]
   +- Project [st_point(cast(_c0#48 as decimal(24,20)), cast(_c1#49 as decimal(24,20))) AS pointshape#415]
      +- FileScan csv

Note: If the distance is an expression, it is only evaluated on the first argument to ST_Distance (pointDf1 above).

Predicate pushdown

Introduction: Given a join query and a predicate in the same WHERE clause, first executes the Predicate as a filter, then executes the join query*

Spark SQL Example:

SELECT *
FROM polygondf, pointdf 
WHERE ST_Contains(polygondf.polygonshape,pointdf.pointshape)
AND ST_Contains(ST_PolygonFromEnvelope(1.0,101.0,501.0,601.0), polygondf.polygonshape)

Spark SQL Physical plan:

== Physical Plan ==
RangeJoin polygonshape#20: geometry, pointshape#43: geometry, false
:- Project [st_polygonfromenvelope(cast(_c0#0 as decimal(24,20)), cast(_c1#1 as decimal(24,20)), cast(_c2#2 as decimal(24,20)), cast(_c3#3 as decimal(24,20)), mypolygonid) AS polygonshape#20]
:  +- Filter  **org.apache.spark.sql.sedona_sql.expressions.ST_Contains$**
:     +- *FileScan csv
+- Project [st_point(cast(_c0#31 as decimal(24,20)), cast(_c1#32 as decimal(24,20)), myPointId) AS pointshape#43]
   +- *FileScan csv

Last update: November 26, 2022 07:43:29