Install on AWS EMR
We recommend Sedona-1.3.1-incubating and above for EMR. In the tutorial, we use AWS Elastic MapReduce (EMR) 6.9.0. It has the following applications installed: Hadoop 3.3.3, JupyterEnterpriseGateway 2.6.0, Livy 0.7.1, Spark 3.3.0.
This tutorial is tested on EMR on EC2 with EMR Studio (notebooks). EMR on EC2 uses YARN to manage resources.
Note
If you are using Spark 3.4+ and Scala 2.12, please use sedona-spark-shaded-3.4_2.12
. Please pay attention to the Spark version postfix and Scala version postfix.
Prepare initialization script¶
In your S3 bucket, add a script that has the following content:
#!/bin/bash
# EMR clusters only have ephemeral local storage. It does not really matter where we store the jars.
sudo mkdir /jars
# Download Sedona jar
sudo curl -o /jars/sedona-spark-shaded-3.3_2.12-1.7.0.jar "https://repo1.maven.org/maven2/org/apache/sedona/sedona-spark-shaded-3.3_2.12/1.7.0/sedona-spark-shaded-3.3_2.12-1.7.0.jar"
# Download GeoTools jar
sudo curl -o /jars/geotools-wrapper-1.7.0-28.5.jar "https://repo1.maven.org/maven2/org/datasyslab/geotools-wrapper/1.7.0-28.5/geotools-wrapper-1.7.0-28.5.jar"
# Install necessary python libraries
sudo python3 -m pip install pandas
sudo python3 -m pip install shapely
sudo python3 -m pip install geopandas
sudo python3 -m pip install keplergl==0.3.2
sudo python3 -m pip install pydeck==0.8.0
sudo python3 -m pip install attrs matplotlib descartes apache-sedona==1.7.0
When you create an EMR cluster, in the bootstrap action
, specify the location of this script.
Add software configuration¶
When you create an EMR cluster, in the software configuration, add the following content:
[
{
"Classification":"spark-defaults",
"Properties":{
"spark.yarn.dist.jars": "/jars/sedona-spark-shaded-3.3_2.12-1.7.0.jar,/jars/geotools-wrapper-1.7.0-28.5.jar",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.kryo.registrator": "org.apache.sedona.core.serde.SedonaKryoRegistrator",
"spark.sql.extensions": "org.apache.sedona.viz.sql.SedonaVizExtensions,org.apache.sedona.sql.SedonaSqlExtensions"
}
}
]
Verify installation¶
After the cluster is created, you can verify the installation by running the following code in a Jupyter notebook:
spark.sql("SELECT ST_Point(0, 0)").show()
Note that: you don't need to run the SedonaRegistrator.registerAll(spark)
or SedonaContext.create(spark)
because org.apache.sedona.sql.SedonaSqlExtensions
in the config will take care of that.