Install Sedona Python
Click and play the interactive Sedona Python Jupyter Notebook immediately!
Apache Sedona extends pyspark functions which depends on libraries:
- pyspark
- shapely
- attrs
You need to install necessary packages if your system does not have them installed. See "packages" in our Pipfile.
Install sedona¶
- Installing from PyPI repositories. You can find the latest Sedona Python on PyPI. There is an known issue in Sedona v1.0.1 and earlier versions.
pip install apache-sedona
- Since Sedona v1.1.0, pyspark is an optional dependency of Sedona Python because spark comes pre-installed on many spark platforms. To install pyspark along with Sedona Python in one go, use the
spark
extra:
pip install apache-sedona[spark]
- Installing from Sedona Python source
Clone Sedona GitHub source code and run the following command
cd python
python3 setup.py install
Prepare sedona-spark jar¶
Sedona Python needs one additional jar file called sedona-spark-shaded
or sedona-spark
to work properly. Please make sure you use the correct version for Spark and Scala.
- For Spark 3.0 to 3.3 and Scala 2.12, it is called
sedona-spark-shaded-3.0_2.12-1.5.1.jar
orsedona-spark-3.0_2.12-1.5.1.jar
- For Spark 3.4+ and Scala 2.12, it is called
sedona-spark-shaded-3.4_2.12-1.5.1.jar
orsedona-spark-3.4_2.12-1.5.1.jar
. If you are using Spark versions higher than 3.4, please replace the3.4
in artifact names with the corresponding major.minor version numbers.
You can get it using one of the following methods:
- If you run Sedona in Databricks, AWS EMR, or other cloud platform's notebook, use the
shaded jar
: Download sedona-spark-shaded jar and geotools-wrapper jar from Maven Central, and put them in SPARK_HOME/jars/ folder. - If you run Sedona in an IDE or a local Jupyter notebook, use the
unshaded jar
. Call the Maven Central coordinate in your python program. For example, Sedona >= 1.4.1
from sedona.spark import *
config = SedonaContext.builder(). \
config('spark.jars.packages',
'org.apache.sedona:sedona-spark-3.0_2.12:1.5.1,'
'org.datasyslab:geotools-wrapper:1.5.1-28.2'). \
config('spark.jars.repositories', 'https://artifacts.unidata.ucar.edu/repository/unidata-all'). \
getOrCreate()
sedona = SedonaContext.create(config)
Sedona < 1.4.1
SedonaRegistrator is deprecated in Sedona 1.4.1 and later versions. Please use the above method instead.
from pyspark.sql import SparkSession
from sedona.register import SedonaRegistrator
from sedona.utils import SedonaKryoRegistrator, KryoSerializer
spark = SparkSession. \
builder. \
appName('appName'). \
config("spark.serializer", KryoSerializer.getName). \
config("spark.kryo.registrator", SedonaKryoRegistrator.getName). \
config('spark.jars.packages',
'org.apache.sedona:sedona-spark-shaded-3.0_2.12:1.5.1,'
'org.datasyslab:geotools-wrapper:1.5.1-28.2'). \
getOrCreate()
SedonaRegistrator.registerAll(spark)
Setup environment variables¶
If you manually copy the sedona-spark-shaded jar to SPARK_HOME/jars/
folder, you need to setup two environment variables
- SPARK_HOME. For example, run the command in your terminal
export SPARK_HOME=~/Downloads/spark-3.0.1-bin-hadoop2.7
- PYTHONPATH. For example, run the command in your terminal
export PYTHONPATH=$SPARK_HOME/python
You can then play with Sedona Python Jupyter notebook.