
Apply a spatial partitioner to a Sedona spatial RDD.
Source:R/spatial_partitioner.R
      sedona_apply_spatial_partitioner.RdGiven a Sedona spatial RDD, partition its content using a spatial partitioner.
Usage
sedona_apply_spatial_partitioner(
  rdd,
  partitioner = c("quadtree", "kdbtree"),
  max_levels = NULL
)Arguments
- rdd
- The spatial RDD to be partitioned. 
- partitioner
- The name of a grid type to use (currently "quadtree" and "kdbtree" are supported) or an - org.apache.sedona.core.spatialPartitioning.SpatialPartitionerJVM object. The latter option is only relevant for advanced use cases involving a custom spatial partitioner.
- max_levels
- Maximum number of levels in the partitioning tree data structure. If NULL (default), then use the current number of partitions within - rddas maximum number of levels. Specifying- max_levelsis unsupported for use cases involving a custom spatial partitioner because in these scenarios the partitioner object already has its own maximum number of levels set and there is no well-defined way to override this existing setting in the partitioning data structure.
Examples
library(sparklyr)
library(apache.sedona)
sc <- spark_connect(master = "spark://HOST:PORT")
if (!inherits(sc, "test_connection")) {
  input_location <- "/dev/null" # replace it with the path to your input file
  rdd <- sedona_read_dsv_to_typed_rdd(
    sc,
    location = input_location,
    delimiter = ",",
    type = "point",
    first_spatial_col_index = 1L
  )
  sedona_apply_spatial_partitioner(rdd, partitioner = "kdbtree")
}