Given a spatial RDD and a query object x
, find all spatial objects
within the RDD that are covered by x
or intersect x
.
Arguments
- rdd
A Sedona spatial RDD.
- x
The query object.
- query_type
Type of spatial relationship involved in the query. Currently "cover" and "intersect" are supported.
- index_type
Index to use to facilitate the KNN query. If NULL, then do not build any additional spatial index on top of
x
. Supported index types are "quadtree" and "rtree".- result_type
Type of result to return. If "rdd" (default), then the k nearest objects will be returned in a Sedona spatial RDD. If "sdf", then a Spark dataframe containing the k nearest objects will be returned. If "raw", then a list of k nearest objects will be returned. Each element within this list will be a JVM object of type
org.locationtech.jts.geom.Geometry
.
See also
Other Sedona spatial query:
sedona_knn_query()
Examples
library(sparklyr)
library(apache.sedona)
sc <- spark_connect(master = "spark://HOST:PORT")
if (!inherits(sc, "test_connection")) {
range_query_min_x <- -87
range_query_max_x <- -50
range_query_min_y <- 34
range_query_max_y <- 54
geom_factory <- invoke_new(
sc,
"org.locationtech.jts.geom.GeometryFactory"
)
range_query_polygon <- invoke_new(
sc,
"org.locationtech.jts.geom.Envelope",
range_query_min_x,
range_query_max_x,
range_query_min_y,
range_query_max_y
) %>%
invoke(geom_factory, "toGeometry", .)
input_location <- "/dev/null" # replace it with the path to your input file
rdd <- sedona_read_geojson_to_typed_rdd(
sc,
location = input_location,
type = "polygon"
)
range_query_result_sdf <- sedona_range_query(
rdd,
x = range_query_polygon,
query_type = "intersect",
index_type = "rtree",
result_type = "sdf"
)
}